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Chapter 1

Introduction

Quantum information theory has opened up new directions in the scientific com-

munity, combining the basics of information processing and the fundamental con-

cepts of quantum physics. It provides us with different encouraging results like

quantum teleportation [1], super dense coding [2], device independent certifica-

tions of cryptographic protocols [3–5] and many more. The subject has developed

for decades giving the detailed ideas of the resources and directions to perform

such modern communication based jobs. Quantum correlations are one of the

most important resources for performing different information processing tasks.

In the year 1935, a completely new perspective towards quantum mechanics

was introduced by A. Einstein, B. Podolsky and N. Rosen (EPR) through their

article “Can Quantum-Mechanical Description of Physical Reality Be Considered

Complete?” [6]. This new aspect shook up the physics community and opened up

an extensive area of research. It gives the non-classical manifestation of physical

reality in terms of quantum entanglement. The term “entanglement” was coined

by E. Schrödinger while he was re-explaining the theory proposed by EPR [7].

It represents the existence of a global state of a composite (multi-partite) system

which can not be expressed as a convex mixture of product states of the individual

subsystems. EPR concluded their article showing that the quantum description of

physical reality is not complete and further posed the question about the existence

of such complete theory. Agreeing with the conclusion of EPR, J. Bell constructed

the local hidden variable (LHV) model to complete the expression for describing

1



the physical reality with the help of quantum formalism [8]. Here, to come up

with the LHV model, J. Bell made 3 assumptions, which are,

1. the condition of realism, i.e. the result of any measurement on a particle is

solely determined by the intrinsic properties of the particle,

2. the condition of locality, i.e. the result obtained at one point, does not

depend on the action taken place at the spatially separated point,

3. free will, i.e. the local apparatus setting does not depend on the hidden

variables which determine the local results.

Based on these assumptions, J. Bell derived an inequality, violation of which

corresponds to the physical reality of nature that can be explained by quantum

mechanics. The third assumption of free will is valid for any physical process. So,

a theory that reproduces the quantum mechanics can be constructed when any

one or both the first two assumptions is not valid.

1.1 Quantum correlations

In quantum information theory, there exists mainly three types of non-local corre-

lations for multi-partite systems, namely, quantum entanglement [6, 9], quantum

steering [7,10,11] and Bell-nonlocality [8,12]. The paradox posed by EPR demon-

strated for the first time, the possibility of creating non-classical and non-local

correlations with the help of entanglement, which Schrödinger tried to re-visit

in terms of quantum steering for pure quantum states [7]. Subsequently, the pio-

neering work of Bell [8] paved the way for mathematically distinguishing quantum

correlations from those arising through a local realist description of physical phe-

nomena. More recently, it has been realized that quantum correlations could be

classified into hierarchical categories [10,11] with entanglement being the weakest,

followed by steering and Bell-nonlocality respectively. Also, quantum steerability

for mixed state has been defined the same time [10,11] based on the local hidden

state (LHS) model proposed by E. Schrödinger earlier.
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In this thesis, we are mainly interested in two types of quantum correlations,

namely, quantum entanglement and quantum steering. The features of quan-

tum entanglement are based on the inseparability of joint state of the composite

quantum system and it plays the role of the basic building block of quantum in-

formation theory. On the other hand, in case of quantum steering, the shared

quantum state of the composite system is considered to be an entangled state a

prior. More precisely, the concept of steering is ingrained in the fact that if the

bipartite state (shared between Alice (A) and Bob (B)) is said to be steerable from

Alice to Bob then Alice can convince Bob by some local operation and classical

communication that the state they are sharing is entangled (while Bob does not

trust Alice). Basically, a bipartite quantum state exhibits steering if the assem-

blage i.e. the set of the conditional states prepared on one side (un-trusted party’s

side) by performing local measurements on the other side cannot be modeled by a

description known as the local hidden state (LHS) model (i.e., Bob holds a grand

ensemble whose elements are classically correlated with the outcomes of Alice’s

measurement).

In the present thesis work, we deal with the technique of preservation of these

quantum correlations from environmental noise and identification of them. The

non-local and inseparable features of quantum correlations enable us to perform

various information processing tasks, such as super dense coding [2], quantum

teleportation [1], quantum error correction [13], 1-sided and both-side device-

independent quantum key distribution [3–5], quantum computing [14] and many

more. For the practical implementation of these tasks using the quantum corre-

lations as useful resources, the concerned system has to interact with the noisy

environment. The quantum correlations are usually fragile to these noisy envi-

ronment. So it is one of the most important jobs in any information processing

task to preserve the quantum correlation in presence of noise, at least by some

amount. This is the general philosophy for controlling decoherence of a quantum

system.

On the other hand, to use these correlations as resources, it is important to

know from which particular state the correlation has been generated. The proce-
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dure of uniquely identifying a particular unknown quantum state and the corre-

sponding measurement settings, while we have a known quantum correlation (a

set of probability distributions) in hand, is called the process of self-testing of the

given quantum state. Another important problem in quantum information theory

is the separability problem, which deals with the identification of any unknown

quantum state. In quantum information theory, the main way of identifying en-

tanglement in a given bipartite state is through the separability criterion. Also,

there are methods based on direct measurement of observables (which are sin-

gle setting measurements) such as entanglement witnessing [15] which have been

experimentally realized.

Recently, quantum coherence [16] has come to be appreciated as one of the

fundamental features of quantum information theory. It has been realized that

coherence embodies basic “quantumness” responsible for superposition of quan-

tum states, from which all quantum correlations arise in composite systems. So,

the relation of coherence with other resources in quantum theory and its use as

an effective resource form an interesting arena of study.

1.2 Outline of the thesis

In this thesis, quantum correlations that are taken in consideration, are entan-

glement and steering. It has already been mentioned that the interaction of any

quantum system with the environment weakens any kind of quantum correlations

in general. Here, we consider an environmental interaction governed by the gener-

alized amplitude damping channel (GADC) [17] and likewise both entanglement

and steering show a fragile nature when the system has been allowed to interact

with the channel. Our motivation is to protect these correlations from the noise

atleast by some amount. First we employ the technique of weak measurement [18]

which includes a weak measurement followed by the environmental interaction and

a reverse weak measurement. But this technique does not help to preserve the

correlations for a broad range of the state parameter or channel parameters as it

does in the case of Amplitude damping channel (ADC). So, we propose a new and
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more general technique for the purpose of preservation. Here, we first obtain the

unitary dilation corresponding to the Kraus operators of the particular channel in

consideration. Then we obtain the inverse of the unitary dilation which basically

gives the inverse action of the original channel action. From this inverse unitary

matrix, the set of Kraus operators can be obtained, corresponding to the inverse

map. These Kraus operators can be considered as the elements of a positive oper-

ator valued measure (POVM) and by performing selective measurements on the

quantum state, we show that it is possible to preserve the quantum correlations

when the state interacts with the noisy environment through GADC. Note that,

the unitary dilation obtained corresponding to the channel action is not unique,

so there is a scope to find different sets of POVM for the preservation of the cor-

relations and to choose the most suitable element of POVM for a particular case.

This work is discussed in Chapter (3).

In the next part of the thesis, we deal with the application based approach of

quantum correlations. This includes the self-testing of quantum steering and the

detection of quantum entanglement in unknown two-qubit states and the study

of the interplay of quantum entanglement with coherence under some three-qubit

quantum operations. Firstly, we consider a steering scenario i.e. basically a 1-

sided device independent (1SDI) situation. In this scenario, we propose a protocol

to self-test any pure bipartite entangled state and the corresponding measurement

settings. For this purpose, we consider two steering inequalities, fine-grained un-

certainty based inequality (FGI) [19] and analog of the ClauserHorneShimonyHolt

inequality (ACHSH) [20] for steering. Violation of FGI gives the idea of the fact

that if the quantum state shared is a pure or a mixed entangled state. It has been

shown that the maximal violation of FGI is obtained only when the shared quan-

tum state is a pure entangled state. After identifying the class of the state and

the corresponding measurement settings with FGI, we either employ the ACHSH

inequality or a quantity called mutual predictability to exactly pinpoint the partic-

ular state shared, upto some local unitaries. This problem is discussed in Chapter

(4).

In Chapter (5), we propose a technique to uniquely identify if an arbitrary
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bipartite quantum state is entangled or not. For the purpose of detecting entan-

glement in an unknown quantum state, we use a determinant based separability

criterion and by finding the weak values [18,21] corresponding to a suitably chosen

Hamiltonian, with the given unknown quantum state being pre-selected and the

post-selective measurement is done in the computational basis, in the procedure of

weak measurement. This weak measurement involves the application of a global

unitary which can be shown to be decomposed in local ones, when we restrict

ourselves within pure states. The process is also shown to be robust under the

errors arising from the inappropriate choice of the weak interaction Hamiltonian.

In this protocol, to find if the state is entangled or not, it is sufficient to have

two copies of the given state at a time, which shows a clear advantage over the

previously proposed similar protocols where the resource requirement was more.

Also, the protocol can be experimentally implemented through a circuit given in

Chapter (5).

From another application based point of view, we deal with the interplay of

quantum correlation and quantum coherence under few three-qubit cloning oper-

ations. On the basis of the definition of coherent and incoherent operations, we

separate these cloning operations. It has been realized that coherence embodies

basic “quantumness” responsible for the superposition of quantum states, from

which all quantum correlations arise in composite systems. The relation of coher-

ence with other resources in quantum theory forms an interesting arena of study.

In a recent work, Streltsov et al. [22] have provided an important insight into the

linkage of coherence with entanglement. Based upon the observation that two-

qubit incoherent operations can generate entanglement only when the input state

is coherent, they have shown that the input state coherence provides an upper

bound on the generated two-qubit entanglement. The connection between co-

herence and nonlocal resources such as entanglement is important to understand

from both the perspective of quantum foundations and information theoretic ap-

plications. This problem has been discussed in Chapter (6).

To deal with all these problems, we first go through few definitions and con-

cepts that are to be taken into consideration throughout the whole thesis. These
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are discussed in Chapter (2). Finally at the end, some future directions and

conclusions have been discussed in Chapter (7).
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Chapter 2

Backdrop of the thesis

The whole thesis work mainly revolves around the preservation and applications

of quantum correlations. As mentioned in Chapter (1), we consider two types of

non-local quantum correlations namely, quantum entanglement and steering. We

study the influence of the GADC on these correlations and try to prescribe some

definite method of preservation of them under the decoherence. On the other hand,

different protocols dealing with identification of the quantum states are described

in steering scenario or for entangled system. Also, we show an inter-dependency

of quantum coherence with entanglement as another application based approach.

In this chapter we introduce a few basic features of quantum foundation theory,

which are useful for all the chapters of the thesis.

2.1 Quantum entanglement

For any Hilbert spaces H, let the space of all linear operators be denoted by

L(H), and the set of all density matrices be P+(H). Now, in case of a bipartite

system, consider two parties, Alice and Bob, each separately possessing a two-

level quantum system (qubit) with Hilbert spaces HA and HB, respectively. Also,

consider the pointer system of the measuring apparatus to be a quantum system

with Hilbert space HE. Now, any bipartite quantum state, that can be written
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as a convex mixture of product states is called a separable state i.e.

ρsep =
∑
i

piρ
A
i ⊗ ρBi (2.1)

for any ρAi ∈ P+(HA), ρBi ∈ P+(HB) and probability distribution {pi}i. Otherwise

the state of the composite system is said to be an entangled state.

In quantum information theory, there are various ways to detect entanglement

in a given biparite state, along with its quantification [15], namely concurrence

[23, 24], entanglement of formation [25], geometric measure of entanglement [26],

entanglement cost and entanglement of distillation [27], negativity [28, 29] and

many more. Concurrence is one of the most important measures of entanglement

and for a bipartite state ρAB it gives a sufficient quantification in this regard and

it is defined as

C(ρAB) = max{(
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4), 0} (2.2)

with, λ1, λ2, λ3, λ4 being the eigenvalues of the matrix ρf in the descending order,

with ρf = ρAB.ρ̃AB (ρ̃AB = (σy⊗σy).ρAB.(σy⊗σy), σy being the Pauli Y-matrix).

Maximally entangled states have concurrence 1. In this thesis, as we restrict

ourselves to bipartite quantum systems, we consider concurrence as a measure of

entanglement.

2.2 Quantum steering

Now let us consider the following scenario which gives the idea about quantum

steering as another non-local property of a given bipartite quantum system. Two

spatially separated parties, say Alice (A) and Bob (B), share an unknown quan-

tum system ρAB ∈ P+(HA ⊗ HB) with the Hilbert space dimension of Alice’s

subsystem being arbitrary (uncharacterized) and the Hilbert space dimension of

Bob’s subsystem being fixed. Alice performs a set of uncharacterized measure-

ments (i. e., Alice’s measurement operators {Ma|x}a,x are elements of unknown

POVM; Ma|x ≥ 0 ∀a, x; and
∑

aMa|x = I, ∀ x) on her part of the shared bi-
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partite system ρAB to prepare the set of conditional states on Bob’s side. Here

x = 0, 1, 2, ... denotes Alice’s choice of measurement settings and a = 0, 1, 2, ...

denote the outcomes of Alice’s measurement. Such a steering scenario is called 1-

sided device-independent (1SDI) since Alice’s measurements are treated as black-

box measurements. This scenario is schematically demonstrated in Fig. (2.1).

The steering scenario is characterized by an assemblage {σa|x}a,x [30] which is the

set of unnormalized conditional states on Bob’s side. Each element in the assem-

blage is given by σa|x = p(a|x)ρa|x, where p(a|x) is the conditional probability of

getting the outcome a when Alice performs the measurement Ax; ρa|x is the nor-

malized conditional state on Bob’s side. Quantum theory predicts that all valid

assemblages should satisfy the following criteria:

σa|x = TrA[(Ma|x ⊗ I)ρAB] ∀σa|x ∈ {σa|x}a,x. (2.3)

In the above scenario, Alice demonstrates steerability to Bob if the assemblage

does not have a local hidden state (LHS) model, i.e., if for all a, x, there is no

decomposition of σa|x in the form,

σa|x =
∑
λ

p(λ)p(a|x, λ)ρλ, (2.4)

where λ denotes classical random variable which occurs with probability p(λ); ρλ

are called local hidden states which satisfy ρλ ≥ 0 and Tr(ρλ) = 1.

We now consider a steering scenario in which the trusted party, Bob, performs a

set of POVMs with elements {Mb|y}b,y (Mb|y ≥ 0 ∀b, y; and
∑

bMb|y = I ∀y) on the

conditional states prepared by Alice’s unknown POVMs turning the assemblage

{σa|x}a,x into measurement correlations p(ab|xy), where p(ab|xy) = Tr(Mb|yσa|x).

Here y = 0, 1, 2, ... denotes Bob’s choice of measurement setting and b = 0, 1, 2, ...

denotes outcome of Bob’s measurement. The correlation p(ab|xy) detects steer-

ability from Alice to Bob, iff it does not have a decomposition as follows [10,11]:

p(ab|xy) =
∑
λ

p(λ)p(a|x, λ)p(b|y, ρλ) ∀a, x, b, y; (2.5)
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Figure 2.1: Schematic diagram for quantum steering for a bipartite system.

where,
∑

λ p(λ) = 1, and p(a|x, λ) denotes an arbitrary probability distribution

arising from local hidden variable (LHV) λ (λ occurs with probability p(λ)) and

p(b|y, ρλ) denotes the quantum probability of outcome b when measurement By is

performed on local hidden state (LHS) ρλ. Hence, the box p(ab|xy) will be called

steerable correlation iff it does not have a LHV-LHS model. Steerable correlations

are certified through the violation of a steering inequality [31].

Similar as quantum entanglement, there are different quantifiers that certifies

quantum steering in a bipartite system. One of them is steerable weight [32] which

is a convex steering monotone [33]. Consider the following decomposition of an

arbitrary assemblage {σa|x}a,x:

σa|x = psσ
S
a|x + (1− ps)σUSa|x ∀a, x, (2.6)

where 0 ≤ ps ≤ 1, σSa|x is a steerable assemblage and σUSa|x is an element of un-

steerable assemblage having LHS model. The weight of the steerable part ps

minimized over all possible decompositions of the given assemblage {σa|x}a,x gives

the steerable weight SW ({σa|x}a,x) of that assemblage.

Also, we consider another measure for steering based on the violation of a
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prescribed steering inequality, in which A performs two black-box (as Alice’s side

is considered to be uncharacterised) dichotomic measurements A0 and A1 and B

performs two qubit-measurements in mutually unbiased bases, given by B0 (= σz)

and B1 (= σx). Then the necessary and sufficient condition for quantum steering

as introduced by Cavalcanti-Foster-Fuwa-Wiseman (CFFW) [20] can be written

in terms of an inequality (also termed as Analog CHSH (ACHSH) inequality for

steering) as stated below.

√
〈(A0 + A1)B0〉2 + 〈(A0 + A1)B1〉2

+
√
〈(A0 − A1)B0〉2 + 〈(A0 − A1)B1〉2 ≤ 2, (2.7)

with, 〈AxBy〉 =
∑

a,b(−1)a⊕bp(ab|xy). Violation of this inequality quatifies steer-

ability of an entangled state.

Other than the inequality given in Eq. (2.7), there are different inequalities

and quantifiers to certify steering. One of them i sthe fine-grained uncertainty

based steering inequality (FGI) [19]. Further we show that the maximal violation

of this particular inequality certifies pure entangled states corresponding to the

suitable choice of measurement settings. The FGI for steering is given as follows,

P (bB0 | aA0) + P (bB1 | aA1) ≤ 1 +
1√
2
. (2.8)

All the quantities mentioned in this chapter, giving the measures of the quan-

tum correlations under consideration, will be used throughout the whole thesis.

2.3 Quantum coherence

Coherence has a long-standing history in the fields of classical and quantum op-

tics. The accuracy of any optical technology mainly rely on the coherence of the

particles in the input beam. But, quantum coherence is not restricted in the field

of optics any more. On the contrary, this plays a crucial role being the resource

for many information processing tasks in quantum technology. Similar to quan-

tum entanglement, hence this also has a well-defined resource theory, where the
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incoherent operations are considered as the free operations and the incoherent

states are the free states [16]. Incoherent operations are those which can not

generate coherence starting from an incoherent state. There are different classes

of incoherent operations, such as maximally incoherent operation (MIO), strictly

incoherent operation (SIO), physical incoherent operation (PIO) and incoherent

operations (IO), making an hierarchical situation as [34–36],

PIO ⊂ SIO ⊂ IO ⊂MIO (2.9)

On the other hand, there are different measures to quantify quantum coherence

as similar to that of entanglement. They are, the distance based measure of

coherence which is defined in terms of the distance between the particular coherent

state and the nearest incoherent state, l1 norm of coherence which is calculable

from the density matrix structure of the corresponding state, entropic measure

of coherence etc. In general, coherence is a basis dependent quantity and also it

might exist in a single-partite systems. Based on the superposition principle, an

arbitrary state can be classified into two types: incoherent and coherent state. A

state ρ is said to be incoherent if it can be expressed in the form

ρ =
∑
i

ρi |i〉 〈i| (2.10)

where |i〉 represents a fixed reference basis of the state. Otherwise, it is said to be

a coherent state. This definition holds not only for single qubit systems but also

for higher dimensional quantum systems. Now, an incoherent quantum operation

is defined as a completely positive trace preserving map which takes an incoherent

state into another. There are different classes of incoherent operation as well [16].

Mathematically, an incoherent quantum operation Λ can be written as

Λ(ρ) =
∑
l

KlρK
†
l (2.11)
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where the operators Kl are incoherent Kraus operators. In this thesis, for the

analysis of coherence, we will employ the l1 norm measure [150] defined as

Cl1(ρ) =
∑
i 6=j

|ρij| (2.12)

Other relevant features related to this type of quantum resource, required for the

study of the thesis interest are discussed in details in Chapter (6).

2.4 Quantum cloning

In the year 1982, Wootters and Zurek proposed the famous no cloning theorem

which makes a distinct classification between the quantum and classical informa-

tion theory [37]. They have shown that it is not possible to copy any unknown

quantum state with maximum probability. Hence, based on this there are differ-

ent security and cryptographic protocols have been introduced in the literature of

quantum theory. But following the result of [37], there have been a numerous num-

ber of protocols have been posed representing different types of quantum cloning,

where none shows a power to copy the state exactly but with some given proba-

bility. They are, Wootter-Zurek cloning machine [37], Buzek-Hillary cloning ma-

chine [38], phase-covariant cloning machine [39], state-dependent universal cloning

machine [40], asymmetric cloning machine [41] etc.

Here let us now consider a few mathematical transformations which govern

the cloning operations in a given scenario. Let us first consider the three qubit

quantum operation given by [38] the following equations and termed as BH cloning

transformation.

|0〉a |0〉b |0〉c →
√

2

3
|0〉a |0〉b |0〉c +√

1

6
(|0〉a |1〉b + |1〉a |0〉b) |1〉c (2.13)
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|1〉a |0〉b |0〉c →
√

2

3
|1〉a |1〉b |1〉c +√

1

6
(|0〉a |1〉b + |1〉a |0〉b) |0〉c (2.14)

The above cloning operation can be considered as an input state independent

cloning transformation. Whereas there are cloning machines whose operation

depends on the state in the input end. In this type of cloning [40], the cloner

operates a unitary operation on the composite Hilbert space of the three party

state in the following way,

|0〉 |0〉 |X〉 → a |00〉 |A〉+ b1 |01〉 |B1〉+ b2 |10〉 |B2〉+

c |11〉 |C〉 (2.15)

|1〉 |0〉 |X〉 → ã |11〉
∣∣∣Ã〉+ b̃1 |01〉

∣∣∣B̃1

〉
+ b̃2 |10〉

∣∣∣B̃2

〉
+

c̃ |00〉
∣∣∣C̃〉 (2.16)

Here the state |X〉 represents the initial ancillary machine state and |A〉, |B1〉,
|B2〉, |C〉,

∣∣∣Ã〉,
∣∣∣B̃1

〉
,
∣∣∣B̃2

〉
,
∣∣∣C̃〉 signify the ancillary machine state at the output

end. As the operation of cloning is unitary, the coefficients in each case should

satisfy the normalization conditions,

a2 + b1
2 + b2

2 + c2 = 1 (2.17)

ã2 + b̃1
2

+ b̃2
2

+ c̃2 = 1 (2.18)

In this thesis, we consider a few of these cloning machines (including the

cloning machines discussed in this section) in 3-qubit form, where the first qubit

is the state that is to be copies, the second one is the store-qubit and the third one

plays the role of an ancillary system. We categorize these cloning operations in

terms of coherent or incoherent operations and study the nature of the correlation

generated at the output end when the ancillary part is traced out. The other

necessary details of the cloning machines taken into consideration are discussed

15



in Chapter (6).

All the other tools used for the purpose of the thesis, are discussed in details

in the corresponding chapter.
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Chapter 3

Protecting quantum correlations

in presence of generalized

amplitude damping channel for

pure two-qubit entangled states

Any kind of quantum resource useful in different information processing tasks is

vulnerable to several types of environmental noise. Here we study the behaviour

of quantum correlations such as entanglement and steering in two-qubit systems

under the application of the generalized amplitude damping channel and propose

some protocols towards preserving them under this type of noise. First, we employ

the technique of weak measurement and reversal for the purpose of preservation

of correlations. We then show how the evolution under the channel action can be

seen as an unitary process. We use the technique of weak measurement and most

general form of selective positive operator valued measure (POVM) to achieve

preservation of correlations for a significantly large range of parameter values.

3.1 Introduction and motivation

Non-local features of quantum correlations enable us to perform various informa-

tion processing tasks, as discussed in Chapter (1). While practically implement-
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ing such tasks, there is always an interaction taking place between the concerned

quantum system and the noisy environment, due to which the useful resources

governed by the quantum correlations get diminished in most of the cases. So it is

one of the most important jobs in any information processing task to preserve the

quantum correlation in presence of noisy environment, at least by some amount.

There are various well-known forms of decohence, modelled by, the depolaris-

ing channel, dephasing channel, amplitude damping channel (ADC), generalized

amplitude damping channel (GADC), and so on [17, 42–45]. It has been shown

that it can never be possible to enhance quantum correlation in two-qubit sys-

tem by unital operations, whereas for some initial states it might be possible to

enhance or generate quantum correlation when the interaction is taking place

through some non-unital channel [46]. For example, interaction through ampli-

tude damping channel can enhance the teleportation fidelity for a particular class

of two-qubit entangled state [47, 48]. On the other hand, using the technique of

weak measurement, one can improve the fidelity of teleportation [49] as well as the

secret key rate for one-sided device independent key distribution (1-SDIKD) [50],

while the interaction is taking place through the ADC.

There exist other ways to protect quantum correlations from environmental

noise, such as by employing quantum Zeno effect [51, 52], frequent unitary inter-

ruptions (bang-bang pulse) [53–56], strong continuous coupling [14,57,58], etc. In

the present work, we focus on the problem of preservation of quantum correla-

tions under the decoherence arising from the action of the generalized amplitude

damping channel. Note that all of the aforesaid decoherence control processes are

dynamical in nature: one needs to follow the dynamics of the system in order

to implement each such control process. On the other hand, the environment

action, considered in the present work is of static nature and hence the aforesaid

decoherence controlling mechanism will not work, in general, for our case.

Here, we confine our studies within quantum entanglement and quantum steer-

ing. Each of these two correlations decreases under the action of generalized am-

plitude damping channel which is a non-unital channel. Now, for the purpose

of preservation of non-local correlation, we start with pure (maximally and non-
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maximally) entangled states, and first employ the technique of weak measurement

which has been used in case of the standard ADC [50]. In the case of weak mea-

surement, as first proposed in [18], the interaction between the system and the

apparatus is taken to be very weak, along with two measurements termed as pre-

selection and post-selection [21]. To use weak measurement as a procedure for

preservation of correlations in a quantum state, one has to do the weak mea-

surement, and the reverse weak measurement to be followed at the end of the

protocol. The procedure of weak measurement has been used in a huge number

of protocols to study different interesting phenomena in quantum theory, such

as spin Hall effect [59], wave particle duality using cavity-QED experiments [60],

superluminal propagation of light [61, 62], direct measurement of the quantum

wave function [63], measurement of ultrasmall time delays of light [64], observing

Bohmian trajectories of photons [65, 66] and also for detection of entanglement

with minimal resources [67].

Next, to make the technique of preservation of non-local correlations more

general for environmental noise, we find the unitary dialation corresponding to

the completely positive trace-preserving evolution of the GADC, starting from

its known Kraus representation [68]. After finding the inverse of this unitary, we

construct the most general form of operator-sum representation (Kraus represen-

tation) of an approximate inverse map, which is not unique. Employing these

Kraus operators individually as the elements of a POVM, we show that it is pos-

sible to preserve the correlations of the initial state up to certain extents for a

broad range of state parameter and damping coefficients. It should be noted that

in all the cases one has to employ selective POVM, as non-selective POVM cor-

responds to an unitary evolution, and under local unitary it is not possible to

generate or enhance any kind of quantum correlation [69]. Although our method

(to be described in Sec. (3.4) below) may appear to be quite specific towards

tackling the noise of GADC, nevertheless, as a method, it has a general appeal in

the sense that it can, in principle, be applicable to any noise model - provided we

have the prior information about the noise model.
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3.2 Preliminaries

In this work, we study the behaviour of the aforesaid two quantum correlations

(entanglement and steering) under the application of environmental noise ex-

pressed in the form of generalized amplitude damping. GADC can be obtained by

solving the optical master equation in presence of a squeezed thermal bath and this

channel describes the effect of environmental dissipation in a finite temperature

bath. The Kraus operators of the corresponding channel are given by,

K1 =
√
ν

1 0

0
√
η


K2 =

√
ν

0
√

1− η
0 0


K3 =

√
1− ν

√η 0

0 1


K4 =

√
1− ν

 0 0
√

1− η 0

 (3.1)

where, ν ∈ [0, 1] reflects the temperature of the bath and η ∈ [0, 1] is the parameter

representing the rate of dissipation due to the bath action. Note that, for ν = 1,

the Kraus representation in Eq. (3.1) reduces to that of an ADC, for which the

environment is assumed to be at zero temperature. The GADC operation Λ is

assumed to be acting here on one of the qubits of a two-qubit state

ρAB : Λ(ρAB) =
4∑
i=1

(IA ⊗Ki)ρAB(IA ⊗K†i ) (3.2)

In previous works, it has been shown that, it is possible to subdue the effect

of environmental interaction through ADC by the application of the technique

of weak measurement and its reversal [49, 50]. In the similar way, in this work,

we first study the effect of weak measurement technique when the environmental

interaction is taking place through GADC. Here, before the environmental in-
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teraction takes place with the particle in consideration (say, B) of the bipartite

system AB, weak measurement (WM) with a strength w is performed on the

same. Basically in this case, the detector detects the system with probability w if

and only if the state of B is in |1〉 (=

0

1

) and hence the measurement operator

W1 corresponding to this scenario is given as,

W1 =
√
w |1〉 〈1| =

0 0

0
√
w

 (3.3)

Note that, the matrix in Eq. (3.3) is singular. Hence this is not effective to

implement for the reverse weak measurement. So, for the purpose of weak mea-

surement, we consider the measurement operator corresponding to the scenario

when the system is not detected by the measuring apparatus. The measurement

operator W0 corresponding to this situation can be evaluated by using the relation,

W †
1W1 +W †

0W0 = I. Hence,

W0 = |0〉 〈0|+
√

1− w |1〉 〈1| =

1 0

0
√

1− w

 (3.4)

As the matrix in Eq. (3.4) is a reversible one, application of the inverse of it

leads back the system to its original state. According to the our protocol, after

the weak measurement is done, the particle in consideration interacts with the

environment through the GADC and lastly reverse weak measurement (RWM)

is done on the same. The Kraus operator corresponding to the reverse weak

measurement is given below.

R0 =

√1− r 0

0 1

 (3.5)

where, r is the strength of the reverse weak measurement (we consider it different

from the weak measurement strength w to make sure that there is a freedom of

choice for different efficiencies of weak and reverse weak measurement).
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After the implementation of the technique of weak measurement, now we pro-

pose another, our more general approach for the purpose of preservation of steer-

ing and entanglement of the bipartite state while interacting with environment

through GADC. Here we consider the unitary dilation corresponding to the com-

pletely positive trace preserving (CPTP) map governed by the GADC. The unitary

dilation corresponding to the Kraus operator representation given in Eq.(3.1), is

not unique and can be obtained considering a two-qubit ancilla for the action of

GADC on each side of the two-qubit system. The action of this unitary (say,

USB) on the initial state of system (B) plus ancilla (S) gives the state after the

environmental interaction taken place through GADC. In the next step, we find

the inverse of this unitary (U−1SB) from which one can find the corresponding Kraus

operator representation of the evolution. These individual Kraus operators can

be considered as elements of the most general POVM. Note here that the reduced

CPTP map (acting on B), formed out of U−1SB, is not necessarily the inverse of

the given GADC (even if such an inverse map exists). This would have been the

case, if under a suitable choice of an initial state σS of the ancilla S, the reduced

state TrS[U−1SB(σS ⊗ Λ(ρB))USB] of B becomes close to the initial state ρB before

applying the GADC Λ. Employing the selective POVM, obtained corresponding

to the inverse map, either before or after the action of the GADC, we study the

concurrence and the steerability (violation of ACHSH inequality) of the final state.

3.3 Employing the technique of weak measure-

ment

As described in the previous section, here we consider that only one side (B) of

the bipartite system shared between A and B is interacting with the environment.

We study two cases described in the flowchart given below.

1) ρAB
GADC(B)−−−−−−→ ρ′AB =

∑4
i=1(IA ⊗Ki)ρAB(IA ⊗Ki

†).
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(i)	
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(ii)	

|�+ih�+|
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(iii)	 (iv)	

Figure 3.1: (i) Comparison of concurrence while the initial state is taken to be the antipar-
allel state, |ψ+〉 〈ψ+|, (ii) Comparison of concurrence while the initial state is taken to be the
parallel state, |φ+〉 〈φ+|, (iii) Comparison of steerability while the initial state is taken to be the
antiparallel state, |ψ+〉 〈ψ+|, (iv) Comparison of steerability while the initial state is taken to be
the parallel state, |φ+〉 〈φ+|. In all the plots, Red curves denote the corresponding function with
the weak measurement and Black curves denote the same without weak measurement, where
Green lines in the plots (iii) and (iv) denote the limit of the violation of the ACHSH inequality.
(For individual plots, ν, η, w and r have been kept fixed.)

2) ρAB
WM(B)−−−−→ ρwAB = (IA ⊗W0)ρAB(IA ⊗W0

†)
GADC(B)−−−−−−→ ρdAB =

∑4
i=1(IA ⊗Ki)ρ

w
AB(IA ⊗Ki

†)
RWM(B)−−−−−→ ρ′′AB = (IA ⊗R0)ρ

d
AB(IA ⊗R0

†).

where Ki’s, W0 and R0 are given in Eq. (3.1), (3.4) and (3.5) respectively. Note

that comparison of steerability and concurrence between the states ρ′AB and ρ′′AB

gives the idea about the fact whether the technique of weak measurement is useful

for the preservation of quantum correlation. In the whole chapter, we consider ei-

ther pure anti-parallel entangled state (|ψ±〉 〈ψ±|) or pure parallel entangled state

(|φ±〉 〈φ±|) in computational basis as the initial state (ρAB) for all the protocols,
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where,

|ψ±〉 = α |01〉 ± β |10〉 , (3.6)

|φ±〉 = α |00〉 ± β |11〉 . (3.7)

In the above cases one must have α2 + β2 = 1, to fulfill the demand of normal-

ization. It is evident from Fig.(3.1), the correlations (entanglement and steering)

show a certain amount of improvement for a section of pure states (for some val-

ues of state parameter α) under the application of weak measurement technique.

Note that, the plots in Fig.(3.1) are corresponding to a particular set of values

of the GADC parameters, ν and η. It can be seen that for some other set of

values for the channel parameter ν and η, it is possible to preserve both the cor-

relations under the application of weak measurement corresponding to different

weak measurement strength w and reverse weak measurement strength r. But

the range of channel parameters for this technique showing any improvement is

quite small (The plots are shown for a particular set of values of the channel

parameters). So in the next section we propose a more general approach for the

preservation of quantum correlation using the selective POVM. This approach is

general in the sense that it deals with the unitary dilation of the GADC, which is

not unique. This gives us the freedom to choose the suitable POVM that preserves

the correlation maximally.

3.4 Preserving the correlation considering a uni-

tary dilation of the channel

It is an well-known fact that any quantum channel that corresponds to a physical

process can be seen as a CPTP evolution. In this section we try to obtain the

unitary dilation of the CPTP evolution corresponding to the GADC and use the

same for the purpose of preservation of entanglement and steerability.
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3.4.1 To find the unitary dilation and its inverse

Let us start by considering a general CPTP map given as N : B(HS) → B(HS),

with HS being the d dimensional Hilbert space associated with a given quan-

tum system S and B(Hs) represents the set of all bounded linear operators,

A : HS → HS. It is obvious that N has an operator-sum representation (or,

Kraus representation) expressed as, N (A) =
∑M

i=1 LiALi† (M being a finite posi-

tive integer) with the Kraus operators Li satisfying the condition,
∑M

i=1 Li
†Li = Id.

Now, let us consider an ancilla system B whose associated Hilbert spaceHB has di-

mension M . Let, {|i〉S}di=1 be an orthonormal basis (ONB) for HS while {|i〉B}Mi=1

be an ONB for HB. Our aim is to find a dM × dM unitary matrix USB which

corresponds to the map N such that,

Li = B 〈i|USB |1〉B ,∀i = 1, 2, ...,M. (3.8)

Alternatively, for every A ∈ B(HS) (thus, A can also be a density matrix of S),

one can write,

N (A) = TrB[USB(A⊗ |1〉B 〈1|)USB†]. (3.9)

Note that, for a given CPTP map, its unitary dilation given by the matrix USB

is not unique. The (αi, β1)-entry of the matrix can be obtained in the following

way,

uαi,β1 ≡ (S 〈α| ⊗ B 〈i|)USB(|β〉S ⊗ |1〉B)

= S 〈α|Li |β〉S , ∀α, β = 1, 2, ..., d. (3.10)

For a given set of Kraus operators, L1, L2,..., LM , with the help of Eq. (3.10),

it is possible to obtain information about d column vectors of the unitary matrix

USB (with respect to the joint ONB {|α〉 ⊗ |i〉
∣∣α = 1, 2, ..., d; i = 1, 2, ...,M}) and
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they are given below.

−→u11 = (u11,11, u12,11, ..., u1M,11, u21,11, u22,11, ...,

u2M,11, ..., ud1,11, ud2,11, ..., udM,11)
T ,

−→u21 = (u11,21, u12,21, ..., u1M,21, u21,21, u22,21, ...,

u2M,21, ..., ud1,21, ud2,21, ..., udM,21)
T ,

..

..

−→ud1 = (u11,d1, u12,d1, ..., u1M,d1, u21,d1, u22,d1, ...,

u2M,d1, ..., ud1,d1, ud2,d1, ..., udM,d1)
T (3.11)

Thus, we obtain an incomplete ONB {−→u11,−→u21, ...,−→ud1} of the dM dimensional

Hilbert space HS ⊗ HB. At this point, we use the method of basis extension

to extend this incomplete ONB given in Eq. (3.11) to form the complete ONB

{−→u11,−→u12, ...,−−→u1M ,−→u21,−→u22, ...,−−→u2M , ...,−→ud1,−→ud2, ...,−−→udM} for HS⊗HB and eventually

to construct the unitary matrix USB. The procedure of basis expansion is not

unique, but it is restricted by two conditions: i) all the column vectors of USB

should be orthogonal to each other and ii) the individual columns must be normal-

ized. Taking these two constraints into consideration one can construct different

forms of USB starting from Eq. (3.11), all of which represents the same CPTP

map N that we have started with.

Now, let us consider the Kraus representation of GADC (expressed in the

computational basis) given in Eq. (3.1) and the evolution of ρAB is given by,

Eq. (3.2). Hence, in this particular scenario of environmental interaction through

GADC, we have M = 4 and d = 2. Thus, in this case, the unitary matrix USB

must be of dimension 8 × 8. Following the technique mentioned above in Eq.
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(3.10), we find only two columns of the 8× 8 unitary, which are −→u11 and −→u21,:

−→u11 = (u11,11 ≡ S 〈0|K1 |0〉S =
√
ν, u12,11 ≡ S 〈0|K2 |0〉S = 0,

u13,11 ≡ S 〈0|K3 |0〉S =
√

(1− ν)η, u14,11 ≡ S 〈0|K4 |0〉S = 0,

u21,11 ≡ S 〈1|K1 |0〉S = 0, u22,11 ≡ S 〈1|K2 |0〉S = 0,

u23,11 ≡ S 〈1|K3 |0〉S = 0, u24,11 ≡ S 〈1|K4 |0〉S =
√

(1− ν)(1− η))T ; (3.12)

−→u21 = (u11,21 ≡ S 〈0|K1 |1〉S = 0, u12,21 ≡ S 〈0|K2 |1〉S =
√
ν(1− η),

u13,21 ≡ S 〈0|K3 |1〉S = 0, u14,21 ≡ S 〈0|K4 |1〉S = 0,

u21,21 ≡ S 〈1|K1 |1〉S =
√
νη, u22,21 ≡ S 〈1|K2 |1〉S = 0,

u23,21 ≡ S 〈1|K3 |1〉S =
√

1− ν, u24,21 ≡ S 〈1|K4 |1〉S = 0)T . (3.13)

Using the method of basis expansion, and by taking care of the constraints stated

previously, we construct several unitary matrices representing the noisy channel

(GADC) in consideration. Note that, from Eq. (3.1), for ν = η = 1, the channel

should represent an identity operation. Keeping all these facts in mind, in this

chapter, we concentrate on two separate unitary evolutions corresponding to the

GADC which are given in terms of the 8× 8 matrix USB below.

U
(1)
SB =


√

ν 0 −
√√√√√√√√√√√(1−ν)η

√√√√√√√√√√√1−(1−ν)(1−η)
0 0 0 0 −

√√√√√√√√√√√ν(1−ν)(1−η)
√√√√√√√√√√√1−(1−ν)(1−η)

0
√

η 0 0
√√√√√√√ν(1 − η) 0 −

√√√√√√√(1 − ν)(1 − η) 0
√√√√√√√(1 − ν)η 0

√
ν

√√√√√√√√√√√1−(1−ν)(1−η)
0 0 0 0 − (1−ν)

√√√√√√√√√√√η(1−η)
√√√√√√√√√√√1−(1−ν)(1−η)

0 0 0
√√√√√√√η(1 − ν) + ν 0 −

√√√√√√√(1 − ν)(1 − η) 0 0
0 −

√
1 − η 0 0

√
νη 0 −

√√√√√√√(1 − ν)η 0
0 0 0

√√√√√√√(1 − ν)(1 − η) 0
√√√√√√√η(1 − ν) + ν 0 0

0 0 0 0
√

1 − ν 0
√

ν 0
√√√√√√√(1 − ν)(1 − η) 0 0 0 0 0 0

η(1−ν)+ν
√√√√√√√√√√√1−(1−ν)(1−η)

(3.14)

U
(2)
SB =

√
ν 0 −

√√√√√√√√√√√η(1−ν)
√

ν
√√√√√√√√√√√1−η(1−ν)

0 0 0 0 −
√√√√√√√√√√√(1−η)(1−ν)

√√√√√√√√√√√1−η(1−ν)

0
√

ην
√√√√√√√√√√√1−(1−ν)

0 0
√√√√√√√(1 − η)ν 0 −

√
1 − ν

√
1 − η 0

√√√√√√√η(1 − ν) 0
√√√√√√√1 − η(1 − ν) 0 0 0 0 0

0 0 0
√√√√√√√η(1 − ν) + ν 0 −

√√√√√√√(1 − η)(1 − ν) 0 0

0 −
√√√√√√√√√√√(1−η)ν

√√√√√√√√√√√1−(1−ν)
0 0

√
ην 0 −

√
1 − ν

√
η 0

0 0 0
√√√√√√√(1 − η)(1 − ν) 0

√√√√√√√η(1 − ν) + ν 0 0
0 0 0 0

√
1 − ν 0

√
ν 0

√√√√√√√(1 − η)(1 − ν) 0 − (1−ν)
√√√√√√√√√√√η(1−η)

√√√√√√√√√√√1−η(1−ν)
0 0 0 0

√
ν

√√√√√√√√√√√1−η(1−ν)

.(3.15)
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Note that, in these cases the aforesaid GADC appears as a dynamical process

in time (as for example, by solving the optical master equation with the initial

state of the heat bath taken to be squeezed vacuum). Our aim is to find out

the Kraus operator representation of the quantum channel whose unitary dilation

corresponds to the inverse of this unitary evolution. As USB is unitary, we must

have U−1SB = U †SB. Now under the action of the inverse unitary evolution U−1SB, the

state of the system at the output end is given by, TrB[U †SB(σS ⊗ |1〉B 〈1|)USB],

where σS is the state of the system the just before the action of the inverse unitary.

Now if Ji for i = 1, 2, 3, 4 be the Kraus operators corresponding to the channel

described by the inverse unitary, one must have,

TrB[U †SB(σS ⊗ |1〉B 〈1|)USB] =
4∑
i=1

JiσSJ
†
i (3.16)

with, Ji = B 〈i|U−1SB |1〉B for i = 1, 2, 3, 4. In fact, if USB =
∑2

k,l=1

∑4
α,β=1 ukα,lβ |k〉S〈l|⊗

|α〉B〈β|, then U−1SB = U †SB =
∑2

k,l=1

∑4
α,β=1 u

∗
kα,lβ |l〉S〈k| ⊗ |β〉B〈α|, and so,

Ji =
2∑

k,l=1

4∑
α,β=1

u∗kα,lβ 〈i|β〉B 〈α|1〉B |l〉S〈k|

=
2∑

k,l=1

u∗k1,li |l〉S〈k| for i = 1, 2, 3, 4. (3.17)

Using the technique mentioned above, we find out the Kraus operators (J1, J2,

J3, J4) corresponding to the channel which is given by the inverse of the unitary

USB.

3.4.2 Fidelity of the quantum state

We can now consider the entire episode in the following fashion,

ρAB
GADC−−−−→ ρ′AB =

∑4
i=1(I⊗Ki)ρAB(I⊗Ki

†).

ρAB
GADC−−−−→ ρ′AB =

∑4
i=1(I⊗Ki)ρAB(I⊗Ki

†)
MN−−→ ρ′′AB

Basically, in this case, we consider a two qubit ancilla along with the initial
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quantum state, and let the whole 4-qubit state pass through the unitary dilation

corresponding to the GADC in the following way,

ρAB
GADC−−−−→ ρ′AB = TrB′B′′ [(IA ⊗ USB)†(ρAB ⊗ φB′B′′)(IA ⊗ USB)] (3.18)

After obtaining the evolved state by tracing out the ancillary qubits, the process

of initialization of ancilla is employed and let the whole system pass through

the inverse unitary map which corresponds to the reverse effect of the channel

action. In this case our job is to check the closeness of the state ρAB with ρ′′AB and

compare it with the closeness of states ρAB andρ′AB. In this direction, we consider

the fidelity as a quantifier for closeness and it is given as,

F (ρi, ρf ) ≡ Tr[

√
(ρi)

1
2ρf (ρi)

1
2 ] (3.19)

It can be easily seen that implementation of the inverse map on the evolved

system’s state and the initialized ancilla, gives a high fidelity for a couple of values

of the damping channel parameter. But this does not show any improvement

when the corresponding correlation such as quantum entanglement or quantum

steering is calculated as the procedure is another local operation which can never

be possibly enhance any type of quantum correlation.

3.4.3 To preserve quantum correlation using unitary di-

alation

Now, following the procedure of finding the Kraus operator representation asso-

ciated to the inverse of the unitary dilation of a quantum channel, mentioned in

Sec. 3.4.1, here we obtain the set of Kraus operators {J (1)
1 , J

(1)
2 , J

(1)
3 , J

(1)
4 } and

{J (2)
1 , J

(2)
2 , J

(2)
3 , J

(2)
4 } corresponding to the unitaries given in Eq. (3.14) and (3.15)
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Figure 3.2: (i) Comparison of concurrence while the initial state is taken to be the antipar-
allel state, |ψ+〉 〈ψ+|, (ii) Comparison of concurrence while the initial state is taken to be the
parallel state, |φ+〉 〈φ+|, (iii) Comparison of steerability while the initial state is taken to be the
antiparallel state, |ψ+〉 〈ψ+|, (iv) Comparison of steerability while the initial state is taken to be
the parallel state, |φ+〉 〈φ+|. In all the plots, Red curves denote the function with the POVM

corresponding to inverse of unitary U
(1)
SB , being applied before the environmental interaction

and Black curves denote the same without POVM, where Green lines in the plots (iii) and (iv)
denote the limit of the violation of the ACHSH inequality. (For individual plots, ν and η have
been kept fixed.)

respectively, which are illustrated below.

J
(1)
1 =

 √ν 0

0
√
ην


J
(1)
2 =

 − √
η−ην√

−νη+η+ν 0

0 −√η − ην


J
(1)
3 =

 0 −√1− η
0 0


J
(1)
4 =

 0 0

−
√

(η−1)(ν−1)ν
√
−νη+η+ν 0

 , (3.20)
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Figure 3.3: (i) Comparison of concurrence while the initial state is taken to be the antipar-
allel state, |ψ+〉 〈ψ+|, (ii) Comparison of concurrence while the initial state is taken to be the
parallel state, |φ+〉 〈φ+|, (iii) Comparison of steerability while the initial state is taken to be the
antiparallel state, |ψ+〉 〈ψ+|, (iv) Comparison of steerability while the initial state is taken to be
the parallel state, |φ+〉 〈φ+|. In all the plots, Red curves denote the function with the POVM

corresponding to inverse of unitary U
(1)
SB , being applied after the environmental interaction and

Black curves denote the same without POVM, where Green lines in the plots (iii) and (iv) denote
the limit of the violation of the ACHSH inequality. (For individual plots, ν and η have been
kept fixed.)

and,

J
(2)
1 =

 √ν 0

0
√
ην


J
(2)
2 =

 − √
ν
√
η−ην√

η(ν−1)+1
0

0 −√η
√

1− ν


J
(2)
3 =

 0 −√1− η
0 0


J
(2)
4 =

 0 0

−
√

(η−1)(ν−1)√
η(ν−1)+1

0

 . (3.21)

Note that,
∑4

i=1 J
(1)
i

†
J
(1)
i = I and

∑4
i=1 J

(2)
i

†
J
(2)
i = I. Let us now consider that
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Figure 3.4: (i) Comparison of concurrence while the initial state is taken to be the antipar-
allel state, |ψ+〉 〈ψ+|, (ii) Comparison of concurrence while the initial state is taken to be the
parallel state, |φ+〉 〈φ+|, (iii) Comparison of steerability while the initial state is taken to be the
antiparallel state, |ψ+〉 〈ψ+|, (iv) Comparison of steerability while the initial state is taken to be
the parallel state, |φ+〉 〈φ+|. In all the plots, Red curves denote the function with the POVM

corresponding to inverse of unitary U
(2)
SB , being applied before the environmental interaction

and Black curves denote the same without POVM, where Green lines in the plots (iii) and (iv)
denote the limit of the violation of the ACHSH inequality. (For individual plots, ν and η have
been kept fixed.)

one side (B, say) of the bipartite system AB is interacting with the environment

through a GADC and hence we apply the selective POVM constructed from the

individual element of the Kraus representation. In this scenario, we consider two

different cases depending upon the order of application of the POVM.

Case I :

ρAB
GADC−−−−→ ρ′AB =

∑4
i=1(I⊗Ki)ρAB(I⊗Ki

†).

ρAB
POVM−−−−→ ρ

p(i)
AB = (I⊗ {J†i Ji}

1
2 )ρAB(I⊗ {J†i Ji}

1
2
†
)

GADC−−−−→ ρ
pd(i)
AB =

∑4
i=1(I⊗Ki)ρ

p
AB(I⊗Ki

†).

Case II :

ρAB
GADC−−−−→ ρ′AB =

∑4
i=1(I⊗Ki)ρAB(I⊗Ki

†).
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Figure 3.5: All the plots are showing the case (iv) of Fig. 3.3, i.e. the comparison of steer-
ability in terms of the violation ACHSH inequality for different values of ν and η (the damping
parameters of the given channel), when the initial state is considered to be a parallel state,
|φ+〉 〈φ+|. The plot colors have their usual meaning.

ρAB
GADC−−−−→ ρ′AB =

∑4
i=1(I⊗Ki)ρ

p
AB(I⊗Ki

†)

POVM−−−−→ ρ
dp(i)
AB = (I⊗ {J†i Ji}

1
2 )ρ′AB(I⊗ {J†i Ji}

1
2
†
).

For Case I, we comparatively study the concurrence and steerability of the states

ρ′AB and ρ
pd(i)
AB , whereas in Case II, the similar protocol has been followed for the

states ρ′AB and ρ
dp(i)
AB . All the comparisons are demonstrated in the figures (3.2),

(3.3) and (3.4).

From all the plots, improvement of quantum correlations on the application

of POVM can be seen, over the sole interaction with the environment through

GADC. This is a more general approach than the approach discussed in the Sec

(3.3) and improvement can be seen over a larger range of values of the damping

parameters η and ν in this case. Also, finding the suitable unitary matrix USB

just by the method of basis expansion, one can identify the helpful POVM in

protecting the quantum correlation, for a particular damping channel.

The motivation behind introducing the unitary dilation USB of a quantum

channel Λ (acting on S) and the quantum channel Λ′ (acting on S) whose unitary

dilation being U−1SB, is to nullify the action of Λ. Such a scheme will act properly
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provided it can be guaranteed that Λ(ρS)⊗σ(1)
B is closed to USB[Λ(ρS)⊗σ(0)

B ]U−1SB

for two fixed states σ
(0)
B and σ

(1)
B of B. Needless to say that such a condition can

not be satisfied, in general. And hence, our method can only recover the quantum

correlation of the state partially. There are decoherence controlling models in

literature for the noisy channels obtained by solving the optical master equation

for thermal bath [51,53]. But for the particular case of GADC, which is obtained

from squeezed thermal bath, our method of protecting quantum correlation is an

effective procedure.

3.5 Summary

In this chapter, we have dealt with the problem of preserving quantum correla-

tions that are useful in different information processing tasks, under the action

of a noisy environment. Here, we choose GADC as the environmental noise and

check its effect on entanglement and steerability of an initial pure bipartite state.

First, we have employed the technique of weak measurement and reversal and

found that a certain amount of improvement could be achieved. But, it can also

be seen that this improvement is restricted for some particular values of the damp-

ing parameters of the corresponding channel. We have next introduced another

method for the preservation of correlations using a unitary dilation of the opera-

tor sum representation of the channel. Interestingly, as the choice of the unitary

is not unique, it provides us the freedom to choose the inverse evolution of the

unitary, and hence the Kraus operators according to our convenience. Choosing

different unitaries and consequently their inverses gives us the scope to extend

our scheme over a larger range of the damping parameters, thus improving the

quality of preservation. Note that in the present chapter we have considered two

particular unitaries corresponding the Kraus representation of GADC for the il-

lustration of our approach. However, it is possible to construct other unitaries

taking the conditions of orthogonality and normalization into account. As a fu-

ture direction, this method can be applied to other noisy channels and the choice

of this unitary can be made suitably in order to generate an optimal scheme for
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protecting quantum correlations under the action of different noisy environments.

In quantum information theory as the protection mechanism is important from

probable noisy environments, it is also important to identify the particular type

of correlation in hand, to use it for proper purposes. In the next chapter, the

procedure of self-testing is discussed in the light of 1-SDI scenario. It deals with

the identification of the particular state (up to some local unitary) from a given

probability distribution.
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Chapter 4

One-sided Device-independent

Self-testing of any Pure

Two-qubit Entangled State

We consider the problem of one-sided device-independent self-testing of any pure

entangled two-qubit state based on steering inequalities which certify the presence

of quantum steering. In particular, we note that in the 2-2-2 steering scenario (in-

volving two parties, two measurement settings per party, and two outcomes per

measurement setting), the maximal violation of a fine-grained steering inequality

can be used to witness certain extremal steerable correlations, which certify all

pure two-qubit entangled states. We demonstrate that the violation of the anal-

ogous Clauser-Horne-Shimony-Holt inequality of steering or the non-vanishing

value of a quantity constructed using a correlation function called mutual pre-

dictability, together with the maximal violation of the fine-grained steering in-

equality, can be used to self-test any pure entangled two-qubit state in a one-sided

device-independent way.

4.1 Introduction and motivation

Based on two assumptions, viz. no signalling and the validity of quantum the-

ory, the device-independent (DI) certification of quantum devices is a relevant
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research direction in quantum information as well as in quantum foundations [70].

The DI approach has several applications, for example, in random number certi-

fication [71], cryptography [72], testing the dimension of Hilbert Spaces [73]. In

Ref. [74], a DI scheme called self-testing was proposed to certify a Bell state (max-

imally entangled two-qubit state) up to local isometries. Moreover, it has been

shown that nonlocal correlations which are extremal 1 can be used for self-testing

as these extremal correlations can only be achieved by performing particular mea-

surements on a unique pure quantum state (up to some local isometry) [76]. Thus,

by observing these extremal quantum correlations, it is possible to identify the

entangled state without any assumption on the physical systems, measurements or

even on the dimension of the relevant Hilbert Space of the given quantum system.

In Ref. [77], the first criterion for robust self-testing of a singlet state (max-

imally entangled bipartite qubit state) in the DI scenario was proposed using

the maximal violation of Bell-CHSH (Bell-Clauser-Horne-Shimony-Holt) inequal-

ity [78]. In Ref. [79], a family of Bell inequalities called tilted Bell-CHSH inequality

was studied. A family of extremal nonlocal correlations which can be simulated

by a pure two-qubit entangled state can be identified by the maximal violation

of the tilted Bell-CHSH inequality. In Ref. [80, 81], it has been shown that any

pure two-qubit entangled state can be self-tested in a fully DI way by using these

extremal correlations. In Refs. [74, 82], criteria for DI certification of quantum

system were proposed without using Bell inequalities. In Ref. [76], it has been

shown that any pure two-qudit entangled state can be self-tested in the Bell sce-

nario where Alice and Bob perform three and four d-outcomes measurements on

their respective sides.

Steering inequalities [83, 84] which are analogous to Bell inequalities are used

to certify the presence of steering. The violation of a steering inequality certifies

the presence of entanglement in a one-sided device-independent (1SDI) way. This

has implication for quantum information processing in which quantum steering

1An extremal quantum correlation in a given Bell scenario cannot be decomposed as a convex
mixture of the other quantum correlations in that given Bell scenario. Note that, there exists
extremal quantum correlations which do not violate any Bell’s inequality maximally in that Bell
scenario [75].
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has been used as a resource for 1SDI quantum key distribution and randomness

generation [85, 86]. It should be noted that it is easier and more cost effective

to implement these 1SDI tasks than to implement the completely DI tasks in

laboratory. It is thus very relevant and important to study the self-testing problem

in the 1SDI framework. Recently, 1SDI self-testing of maximally entangled two-

qubit state has been proposed [87, 88]. In this context, the maximal violation of

a linear steering inequality [83] was shown to self-test the maximally entangled

two-qubit state in a 1SDI way. Moreover, self-testing via quantum steering was

shown to provide certain advantages over DI self-testing.

In this work, we are interested in the problem of self-testing of any pure two-

qubit entangled state in the 1SDI scenario. For this purpose, we consider two

steering inequalities, viz. the fine grained inequality (FGI) [19], whose maximum

violation certifies that the shared state is pure two-qubit entangled state, and the

analogous CHSH inequality for steering [20]. We demonstrate that the violation

of the analogous CHSH inequality of steering together with the maximal violation

of the fine-grained steering inequality can be used to self-test any pure entangled

two-qubit state in a 1SDI way. We further propose another scheme for 1SDI self-

testing of any pure two-qubit entangled state in which the non-vanishing value of

a quantity constructed using a correlation function called “mutual predictability”

together with the maximal violation of the fine-grained steering inequality is used.

4.2 Self-testing via quantum steering

Device independent self-testing of quantum states through the violation of a Bell

inequality occurs only for pure entangled states because it requires the observation

of an extremal nonlocal correlation [75]. Therefore, in the self-testing problem,

certifying a particular pure entangled state is of interest.

Suppose Alice and Bob want to self-test a particular pure entangled state

|ψ̃〉AB ∈ H′A ⊗HB from the steerable assemblage arising from the state |ψ〉AB ∈
HA ⊗HB and measurement operators {Ma|x}a,x on Alice’s side in the aforemen-

tioned 1SDI scenario. Then the assemblage self-tests the pure entangled state
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|ψ̃〉AB if there exists an isometry on Alice’ side Φ: HA → HA ⊗H′A such that

Φ(|ψ〉AB) = |junk〉A ⊗ |ψ̃〉AB ,

Φ(Ma|x ⊗ I |ψ〉AB) = |junk〉A ⊗ (M̃a|x ⊗ I) |ψ̃〉AB , (4.1)

where |junk〉A ∈ HA and {M̃a|x}a,x are the measurement operators acting on the

Hilbert space H′A. In Ref. [87], self-testing of maximally entangled two-qubit state

based on the steerable assemblage arising from the two-setting steering scenario

was proposed.

Analogous to the DI self-testing scheme based on the maximal violation of a

Bell inequality, the measurement correlations p(ab|xy) = Tr(Πb|yσa|x) arising from

the assemblage can also be used to self-test the particular pure entangled state.

In Refs. [87,88], self-testing of the maximally entangled two-qubit state based on

the maximal steerable correlation was proposed through the maximal violation

of a steering inequality. That is, it was shown that the maximal violation of the

linear steering inequality [83],

〈A0σz〉+ 〈A1σx〉 ≤
√

2, (4.2)

self-tests a maximally entangled two-qubit state. Here 〈AxBy〉 =
∑

a,b(−1)a⊕bp(ab|xy)

with By being equal to σz or σx.

4.3 A 1SDI Self-testing Scheme for any pure bi-

partite qubit entangled state

Here we consider a steering scenario as described in Sec. 2, in which Alice performs

two black-box dichotomic measurements and Bob performs two qubit measure-

ments in mutually unbiased bases for self-testing any pure two-qubit entangled

state in a 1SDI way. For this steering scenario, a necessary and sufficient condition

for quantum steering in the form of steering inequality has been proposed in Eq.

(2.7). Our self-testing scheme for certifying any pure bipartite qubit entangled
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state is based on the violation of the CFFW inequality with the maximal violation

of another steering inequality, i.e., the fine-grained inequality (FGI), given in Eq.

(2.8).

Interestingly, we will now demonstrate that the maximum violation of the FGI

by a shared two-qubit quantum state is achieved if and only if the shared state is

any pure (maximally or non-maximally) entangled two-qubit state.

4.3.1 Lemma 1

Suppose the trusted party, Bob (B), performs projective qubit measurements in

mutually unbiased bases (as we will consider CFFW or ACHSH inequality for

steering later) corresponding to the operators B0 = |0〉 〈0| − |1〉 〈1| and B1 =

|+〉 〈+|−|−〉 〈−|, where {|0〉, |1〉} is an orthonormal basis and {|+〉, |−〉} is another

orthonormal basis given by, |+〉 = 1√
2
(|0〉 + |1〉) and |−〉 = 1√

2
(|0〉 − |1〉). Then

the correlation violates FGI maximally if and only if the two-qubit state has the

form,

|ψ(θ)〉 = cos θ |00〉+ sin θ |11〉 0 < θ <
π

2
(4.3)

up to local unitary transformations and Alice (A) performs projective measure-

ments corresponding to the two operators given by, A0 = |0〉 〈0| − |1〉 〈1| and

A1 = cos 2θ(|0〉 〈0| − |1〉 〈1|) + sin 2θ(|+〉 〈+| − |−〉 〈−|) (or their local unitary

equivalents).

Proof

It can be checked by simple calculation that, for B0, B1 mentioned above,

if Alice and Bob share the state |ψ(θ)〉 given by Eq.(4.3) and Alice performs

projective measurements corresponding to the operators A0 = |0〉 〈0| − |1〉 〈1| and

A1 = cos 2θ(|0〉 〈0| − |1〉 〈1|) + sin 2θ(|+〉 〈+| − |−〉 〈−|) (or their local unitary

equivalents), then the value of left hand side of FGI is 2. This numerical value 2

is the maximum violation of FGI since the algebraic maximum of left hand side

of FGI is 2.

Violation of any steering inequality implies that the shared state is steerable
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and, hence, entangled. Therefore, the shared bipartite qubit state giving rise to

the maximum violation of FGI is either a pure or a mixed entangled state. Note

that the left hand side of FGI is the sum of two conditional probabilities and the

magnitude of its maximum quantum violation is 2. Hence, maximum quantum

violation of FGI implies that each of the two conditional probabilities appearing

in the left hand side of FGI given by Eq. (2.8) is equal to 1, i.e. P (bB0 | aA0) =

1 and P (bB1 | aA1) = 1. This implies that, by performing measurements of the

observables corresponding to the operators A0 and A1 on her particle, Alice can

predict with certainty the outcomes of Bob’s two different measurements of the

two observables corresponding to the operators B0 and B1, respectively, without

interacting with Bob’s particle, where B0 and B1 are two mutually unbiased qubit

measurements as described earlier. This is nothing but the EPR paradox2 [6].

Suppose, ρ0|0 and ρ1|0 denote the normalised conditional states at Bob’s end

when Alice gets outcome a = 0 and a = 1, respectively, by performing the mea-

surement A0. The states ρ0|0 and ρ1|0 should be the eigenstates of the operator

B0 as maximum quantum violation of FGI implies Bob’s conditional probability

P (bB0 | aA0) = 1 for a = 0 and for a = 1. Again, suppose, ρ0|1 and ρ1|1 denote

the normalised conditional states at Bob’s end while Alice gets the outcome a = 0

and a = 1, respectively, by performing the measurement A1. Following similar ar-

guments, it can be shown that the states ρ0|1 and ρ1|1 should be the eigenstates of

the operator B1. Hence, all the four conditional states at Bob’s side ρ0|0, ρ1|0, ρ0|1

and ρ1|1 are pure. If the shared state between Alice and Bob is a pure entangled

state, then it has been shown that the four conditional states at Bob’s side are

pure [89]. Now in the following we prove that these pure steerable assemblages can

not be obtained from any mixed state, hence showing that the maximal violation

of FGI can be obtained only from a pure entangled state.

Let us assume that σ0|0, σ1|0, σ0|1 and σ1|1 denote the elements of assemblage

prepared at Bob’s side which corresponds to maximum violation of FGI. Each

element σa|x of the assemblage is related to the normalised conditional state ρa|x

at Bob’s side through the relation given by, σa|x = p(a|x)ρa|x, where p(a|x) is

2EPR paradox occurs when Alices pair of local quantum measurements prepare two different
set of quantum states at Bobs end which are eigenstates of two noncommuting observables.
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the conditional probability of getting the outcome a when Alice performs the

measurement Ax; x ∈ {0, 1}; a ∈ {0, 1}. Since each of the conditional states

ρa|x are pure, they cannot be expressed as convex mixture of two different states.

Moreover, these conditional states are associated with the steerable assemblage

{σa|x}a,x giving rise to maximum violation of FGI. Hence, steerable weight of the

assemblage {σa|x}a,x giving rise to maximum violation of FGI must be 1.

According to Lewenstein-Sanpera decomposition, any bipartite qubit state ρ

has a unique decomposition in the form [90]

ρ = µρentpure + (1− µ)ρsep, (4.4)

where 0 ≤ µ ≤ 1, ρentpure is a bipartite qubit pure entangled state and ρsep is a

bipartite qubit separable state. Here, µ = 1 implies that ρ is a pure entangled

state and µ = 0 implies that ρ is separable. So, for any bipartite qubit mixed

entangled state ρm, µ 6= 1 and µ 6= 0, i. e., 0 < µ < 1. Consider {σma|x}a,x denotes

an arbitrary assemblage produced from ρm when Alice performs measurements

{Ma|x}a,x. Here σma|x = TrA[(Ma|x ⊗ I)ρm], ∀σma|x ∈ {σma|x}a,x. Since ρm can always

be expressed in the form given in Eq. (4.4),

ρm = µ̃ρ̃entpure + (1− µ̃)ρ̃sep, (4.5)

with 0 < µ̃ < 1, we have for all a and x

σma|x = TrA[(Ma|x ⊗ I)(µ̃ρ̃entpure + (1− µ̃)ρ̃sep)]

= µ̃T rA[(Ma|x ⊗ I)ρ̃entpure]

+ (1− µ̃)TrA[(Ma|x ⊗ I)ρ̃sep]

= µ̃σ̃entpurea|x
+ (1− µ̃)σ̃sepa|x , (4.6)

ρ̃entpure is a bipartite qubit pure entangled state, ρ̃sep is a bipartite qubit separa-

ble state, σ̃entpurea|x
is an element of the assemblage {σ̃entpurea|x

}a,x produced from

the bipartite qubit pure entangled state ρ̃entpure when Alice performs measurements

{Ma|x}a,x and σ̃sepa|x is an element of the assemblage {σ̃sepa|x}a,x produced from the

42



bipartite qubit separable state ρ̃sep when Alice performs measurements {Ma|x}a,x.
Since, steerable weight is a convex steering monotone [33] we have

SW ({σma|x}a,x)

= SW (µ̃{σ̃entpurea|x
}a,x + (1− µ̃){σ̃sepa|x}a,x)

≤ µ̃SW ({σ̃entpurea|x
}a,x) + (1− µ̃)SW ({σ̃sepa|x}a,x), (4.7)

where SW (.) denotes the steerable weights of the corresponding assemblages.

As, {σ̃sepa|x}a,x is the assemblage produced from a separable state, it is an un-

steerable assemblage and hence SW ({σ̃sepa|x}a,x) = 0 [33]. On the other hand,

0 ≤ SW ({σ̃entpurea|x
}a,x) ≤ 1. Hence, from Eq.(4.7) we get

SW ({σma|x}a,x) ≤ µ̃ < 1 (4.8)

We have, therefore, proved that steerable weight of an arbitrary bipartite qubit

mixed entangled state cannot be equal to 1. On the other hand, it has been shown

that the steerable weight of the assemblage produced by performing appropriate

measurements on an arbitrary pure entangled state is equal to 1 [32]. Since max-

imum violation of FGI implies that the corresponding assemblage have steerable

weight equal to 1, the maximum violation of FGI is achieved only if the shared

bipartite qubit state between Alice and Bob is a pure entangled state.

The general form of any bipartite qubit pure entangled state is given by,

|ψp〉 = |ψ(θ)〉 = cos θ |00〉 + sin θ |11〉, where 0 < θ < π
2
, up to local unitary

transformations. Maximum violation of FGI implies that P (bB0 | aA0) = 1 and

P (bB1 | aA1) = 1. Let us assume that a = 0 and b = 0. In this case, it can be easily

checked that, for B0 mentioned above, P (bB0 | aA0) = 1 for the aforementioned

state |ψp〉 implies that Alice performs projective measurement of the observable

corresponding to the operator A0 = |0〉 〈0| − |1〉 〈1|. Moreover, it can also be

checked that P (bB1 | aA1) = 1 using aforementioned B1 by the state |ψp〉 implies

that Alice performs projective measurement of the observable corresponding to

the operator A1 = cos 2θ(|0〉 〈0| − |1〉 〈1|) + sin 2θ(|+〉 〈+| − |−〉 〈−|). Hence the

claim.
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For other possible outcomes (a and b) the proof is similar.

4.3.2 Lemma 2

The maximal violation of FGI, i.e., 2 is obtained in our 1SDI scenario where Bob

performs the two mutually unbiased qubit measurements corresponding to the

operators given in the previous Lemma 1. Let this maximal violation be achieved

from the assemblage arising from the pure state |ψ〉AB ∈ HA ⊗ HB (where the

dimension of HB is 2) and measurement operators {Ma|x}a,x on Alice’s side. Then

there exists an isometry on Alice’s side Φ: HA → HA ⊗H′A, where the dimension

of H′A is 2, such that

Φ(|ψ〉AB) = |junk〉A ⊗ |ψ(θ)〉AB ,

Φ(Ma|x ⊗ I |ψ〉AB) = |junk〉A ⊗ (M̃a|x ⊗ I) |ψ(θ)〉AB , (4.9)

where |junk〉A ∈ HA, |ψ(θ)〉AB is given by Eq. (4.3) and {M̃a|x}a,x are the

measurement operators on Alice’s side corresponding to the observables given

in Lemma 1.

Proof

Let us recall a lemma given in Ref. [91] which states that, given two Hermitian

operators A0 and A1 with eigenvalues ±1 acting on a Hilbert space H, there is

a decomposition of H as a direct sum of subspaces Hi of dimension d ≤ 2 each,

such that both A0 and A1 act within each Hi, that is, they can be written as

A0 = ⊕iAi0 and A1 = ⊕iAi1, where Ai0 and Ai1 act on Hi.

In general, in our steering scenario, any shared bipartite state lies in B(HA ⊗
HB) where the dimension of HA (the untrusted side) is ‘d’ and the dimension of

HB (the trusted side) is 2. From the above lemma it follows that the measurement

observables acting on HA act within each subspace Hi
A with dimension d ≤ 2 of

HA. Note that

HA ⊗HB = (⊕iHi
A)⊗HB ' ⊕i(Hi ⊗HB). (4.10)
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It follows that the pure state |ψ〉AB ∈ HA ⊗HB and the measurement operators

{Ma|x}a,x that give rise to the maximal violation of FGI can be decomposed as

|ψ〉AB = ⊕i
√
qi |ψ〉iAB , (4.11)

with
∑

i qi = 1, where |ψ〉iAB is a 2× 2 pure state and

Ma|x = ⊕iM i
a|x, (4.12)

where M i
a|x is an operator acting on Hi

A of d = 2.

From our Lemma 1, it follows that each |ψ〉iAB in Eq. (4.11) should be of the

following form:

|ψ〉iAB = cos θ |2i, 0〉+ sin θ |2i+ 1, 1〉 , (4.13)

and for x = 0, M i
a|x in Eq. (4.12) are given by M i

0|0 = |2i〉 〈2i| and M i
1|0 =

|2i+ 1〉 〈2i+ 1|.
Alice can append a local ancilla qubit prepared in the state |0〉′A and look for

a local isometry Φ such that

(Φ⊗ I) |ψ〉AB |0〉
′
A = |junk〉A ⊗ |ψ(θ)〉A′B , (4.14)

where |junk〉A is the junk state and |ψ(θ)〉A′B is the state given by Eq. (4.3).

This can be achieved for Φ defined by the map

Φ |2k, 0〉AA′ 7−→ |2k, 0〉AA′ , (4.15)

Φ |2k + 1, 0〉AA′ 7−→ |2k, 1〉AA′ . (4.16)

Thus, up to local isometry on Alice’s side the maximal violation of FGI cer-

tifies any pure two-qubit entangled state in our 1SDI scenario, because any pure

two-qubit entangled state can always be written in the form given by Eq. (4.3) fol-

lowing Schmidt decomposition [92,93]. In order to identify which pure entangled

two-qubit state has been certified, we consider violation of the CFFW inequality

(2.7). For the state |ψ(θ)〉 given by Eq.(4.3) with the aforementioned measure-
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Figure 4.1: Along x-axis we plot concurrence of the state |ψ(θ)〉 and along y-axis, we plot the
LHS of the analogue CHSH steering inequality.

ment settings on Alice’s and Bob’s side, violation of the CFFW inequality is given

by,

p =
√

4 sin4(θ) + sin4(2θ) +
√

sin4(2θ) + 4 cos4(θ). (4.17)

Note that concurrence which is a measure of entanglement [94] of the state |ψ(θ)〉
given by Eq. (4.3) turns out to be C = sin 2θ. It is now readily seen that the

violation of CFFW inequality (2.7) for the state |ψ(θ)〉 given by Eq. (4.3) and

concurrence of this family of states are functions of θ. Hence, one can easily

find out the concurrence of the pure two-qubit state, which is self-tested by the

maximum violation of FGI, from the violation of the CFFW inequality. In other

words, from the violation of the CFFW inequality one can particularly identify

which pure two-qubit entangled state has been self-tested.

The variation of the violation ‘p’ with concurrence ‘C’ is monotonic and con-

tinuous and it is shown in Fig. (4.1). Hence, from the violation of the CFFW

inequality given by Eq. (2.7), one can certify whether the pure two-qubit entan-

gled state is maximally entangled or non-maximally entangled. Moreover, from

the violation of CFFW inequality using the plot presented in Fig. (4.1), one

can find out which particular pure two-qubit entangled state has been self-tested.

Therefore, we can state the following self-testing result.

46



Result. The maximal violation of FGI self-tests any pure two-qubit entangled

state. On the other hand, magnitude of the violation of CFFW inequality for the

measurements that give rise to the maximal violation of FGI certifies the amount

of entanglement of the self-tested pure two-qubit entangled state, i.e., magnitude

of the violation of CFFW inequality for the measurements that give rise to the

maximal violation of FGI identifies which particular pure two-qubit entangled

state has been self-tested by FGI.

Note that, for the maximally entangled state, our scheme for 1SDI self-testing

reduces to the 1SDI self-testing scheme based on the maximal violation of the

steering inequality given in Eq. (4.2).

For the above self-testing scheme, the full knowledge of the measurement cor-

relations p(ab|xy) is needed. We will now propose a scheme which does not require

the full knowledge of the measurement correlations. This scheme is based on the

maximal violation of FGI together with non-vanishing value of a correlation func-

tion called “mutual predictability” which has been used for constructing entangle-

ment witness [95] and steering inequality [96]. For the dichotomic observables Ax

and By on Alice’s and Bob’s side, respectively, the mutual predictability is given

by

CAxBy = p(a = 0, b = 0|x, y) + p(a = 1, b = 1|x, y) (4.18)

Let us now consider the following quantity in the context of our 1SDI scenario.

This quantity is defined in terms of mutual predictability as follows:

E = min{CA0B0 , CA1B1}. (4.19)

Note that for the pure state given by Eq. (4.3) and the measurements that are

specified in Lemma 1, the above quantity is related to concurrence of the state

|ψ(θ)〉, given by C = sin 2θ, as E =
1 + C2

2
. Hence, the quantity E (or, 2E−1) is

a monotonic function of concurrence of the state |ψ(θ)〉. Therefore, we can state

another self-testing scheme below.
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Result. The maximal violation of FGI self-tests any pure two-qubit entangled

state. On the other hand, nonvanishing value of the quantity 2E − 1, where E

defined in Eq. (4.19), for the measurements that give rise to the maximal violation

of FGI certifies concurrence of the self-tested pure two-qubit entangled state, i.

e., the non-vanishing value of the quantity 2E− 1 for the measurements that give

rise to the maximal violation of FGI identifies which particular pure two-qubit

entangled state has been self-tested by FGI.

It is also interesting to note that for the above scheme, it is not necessary to

assume that the trusted party performs measurements in mutually unbiased bases.

In fact we can assume projective measurements of arbitrary pair of noncommuting

qubit observables at trusted party’s side. In this case also maximum violation of

FGI implies EPR paradox [6], which is only possible if the shared state is any

pure two-qubit entangled state [89]. So this scheme can also be used for self-

testing in the dimension-bounded steering scenario [97] where only the Hilbert-

space dimension of measurements of the trusted party is assumed.

4.4 Summary

Quantum steering which is a weaker form of quantum inseparabilities compared

to Bell-nonlocality, certifies the presence of entanglement in a 1-sided device-

independent scenario. This method for certification of entanglement has ad-

vantages over entanglement certification methods based on Bell nonlocality and

standard entanglement witnesses. Motivated by this, recently, 1-sided device-

independent self-testing of the maximally entangled two-qubit state was proposed

by Supic et. al. [87] and Gheorghiu et. al. [88] via quantum steering.

In this work, we have proposed two schemes to self-test any pure (maximally

or non-maximally) bipartite qubit entangled state up to some local unitary, in a

1SDI way via quantum steering. One of our schemes is based on two different

steering inequalities,

i) Fine-grained steering inequality (FGI) [19] and

ii) analogous CHSH inequality for steering [20].
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We have shown that the violation of the analogous CHSH inequality for steering

together with the maximal violation of FGI self-tests any pure two-qubit entangled

state. In another scheme, we have demonstrated that the non-vanishing value of

a quantity constructed from a correlation function called mutual predictability

together with the maximal violation of FGI can be used to self-test any pure

two-qubit entangled state in the dimension-bounded steering scenario.

This chapter deals with the identification of a pure entangled state based on

the quantum correlation in hand, i.e. when a probability distribution is provided.

One of the most fundamental problems of quantum information theory is the

separability problem. The motivation of this kind of a problem is to identify if

an arbitrary quantum state is entangled or not. This becomes a computationally

hard problem when the system dimension is greater than six. In the next chapter,

a protocol has been proposed, which detects bipartite qubit entangled states with

minimal resources.
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Chapter 5

Universal detection of

entanglement in two-qubit states

using only two copies

We revisit the problem of detection of entanglement of an unknown two-qubit state

using minimal resources. Using weak values and just two copies of an arbitrary

two-qubit state, we present a protocol where a post-selection measurement in

the computational basis provides enough information to identify if the state is

entangled or not. Our protocol enables complete state identification with a single-

setting post-selection measurement on two copies of the state. It follows that by

restricting to pure states, the global interaction required for determining the weak

values can be realized by local operations. We further show that our protocol is

robust against errors arising from inappropriate global interactions applied during

weak value determination.

5.1 Introduction and motivation

Ever since the coinage of the word “entanglement” by Schrödinger in 1935 closely

following the work of Einstein, Podolsky and Rosen (EPR) [6], discussion and de-

bate about its nature and manifestation has continued to remain one of the most

engaging issues in modern physics. In present times, entanglement is regarded as
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the primary building block of quantum correlations, leading to landmark discov-

eries in quantum information science [9]. Numerous protocols have already been

suggested, which use these correlations as resource and result in improvements,

which no classical resource could achieve [1–5,98]. It has been realized [10,11] that

the nonlocal quantum correlations responsible for steering and Bell-violation can-

not exist without the presence of entanglement. As a result of this, identification

and quantification of quantum correlations, have become a topic of cutting edge

research in various inter-disciplinary areas of physics, mathematics and computer

science, as well.

In quantum information theory, the way of identifying entanglement in a given

bipartite state is through the separability criterion [99,100]. Though this criterion

is also helpful in quantification of entanglement [101, 102], it is measurable only

when full knowledge of the state is available. Such knowledge requires state to-

mography [103], which is expensive in terms of resources required. On the other

hand, there are methods based on direct measurement of observables (which are

single setting measurements) such as entanglement witnessing [104–106] which

have been experimentally realized [107, 108]. In addition, other schemes have

been recently proposed, such as self-testing protocols as discussed in Chapter (4),

which can identify individual entangled states giving rise to particular correla-

tions in a given scenario [77, 80, 87, 109]. However, all such methods suffer from

the drawback of non-universality. For instance, for every entanglement witness

(EW) there exists a class of entangled states, which it cannot detect [105, 110].

This prevents the use of any single EW to detect all entangled states. It is perti-

nent to note here that arranging a higher number of measurement settings is an

expensive resource in experiments.

Entanglement detection in two-qubit states has drawn renewed attention, as

can be seen from several recent works [111–114]. The main motivation for the

present study is to reduce the resources required for identifying entanglement,

and here we concern ourselves with the task of identification of entanglement

in an unknown quantum state. In this context, Yu et al. [115] constructed an

observable acting on four copies of any two-qubit state, that could detect entan-
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glement for certain classes of two-qubit states. Augusiak et al. [116] proposed

the construction of an observable which acts on four copies of a two-qubit state

and results in detection of all entangled states. Therefore, universal detection of

entanglement could be done through measurement in a single setting, but the cost

is to supply multiple copies of the state. Further work in this direction [117–120],

has been performed to reduce the resources required for universal identification

of entangled states. Girolami et al. [117] proposed a method for identifying quan-

tum correlations in two-qubit states through measurement of seven observables

on four copies, where the observables are local in the Alice-Bob cut (the two par-

ties sharing the bipartite state). It has been shown [119, 120] that any universal

entanglement detection scheme on a single copy of a state, has to be necessarily

a state tomography process. Recently, the protocol in [116] was extended to the

completely device independent scenario [121].

In the present work, we propose a protocol where universal detection of en-

tanglement is possible in a single measurement setting on just two copies of any

two-qubit state, using weak values. The idea of weak measurement was first pro-

posed by Aharonov et al. in [18], to show that an experimental outcome outside

the eigenvalue spectrum of an observable could be obtained if a sufficiently weak

coupling of the system and the apparatus along with post-selection is employed.

Weak measurements have been utilized in several interesting applications such as

observations of spin Hall effect [59], trajectories of photons [122], direct measure-

ment of the quantum wave function [63], and measurement of ultrasmall time de-

lays of light [123]. The technique of weak measurement and reversal has also been

used in the preservation of entanglement [124–127], teleportation fidelity [49] and

steerability [50] through noisy channels. Detection of weak value has been found

to be useful in observing geometric phase [128], non-Hermitian operators [129]

and quantum state [130–132].

Here we show that our protocol of entanglement detection using weak values

on two copies of an arbitrary two-qubit state results in complete identification of

the state, i.e., state tomography, in the similar fashion as in [119,120]. Note that,

a number of attempts [118, 133–135] were made to measure concurrence [25, 136]
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of two qubit states through measurement of a single observable on two copies of

the state. Although, for pure states [133] such observables could be found, only

estimates could be given for mixed states [118,134,135]. In this regard, our result

provides a solution to this problem, as complete identification of two-qubit states,

obtained through our protocol, also imply measurement of concurrence for any

two-qubit state using two copies. We further show that on restricting the set of

states to just pure states, the weak interaction necessary in our protocol, can be

realized through local operations on each of the qubits. Finally, we also show

that our protocol is robust to errors arising from inappropriate choice of weak

interaction between two copies of the two-qubit states.

5.2 Background

Any quantum state ρ ∈ L(HA ⊗HB), can always be decomposed as,

ρ =
∑
ijkl

pijkl |i〉 〈j| ⊗ |k〉 〈l| (5.1)

where {|i〉}i denotes an orthonormal basis in each of the subsystem Hilbert spaces

HA and HB. Using this decomposition, we can define the partial transpose of ρ,

with respect to the subsystem B, in the following way,

ρTB =
∑
ijkl

pijlk |i〉 〈j| ⊗ |k〉 〈l| (5.2)

Note that, we can similarly define ρTA and ρTB = (ρTA)T , where •T denotes trans-

position. Now, we can present the separability criteria, as mentioned in the pre-

vious section. Any two qubit state ρ ∈ P+(HA ⊗HB) is separable [116, 137, 138]

if and only if,

det
(
ρTB
)
≥ 0 (5.3)

where det(A) represents determinant of a matrix A. This criterion can also be

linked to the quantification of entanglement in terms of concurrence [?].
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Now the idea of weak measurement and weak values will be briefly illustrated

here. In the theory of weak measurements [18, 21], the pointer system of the

measuring apparatus is kept in an initial state φin ∈ P+(HE) and a quantum

system is pre-selected in a state ρ ∈ P+(H). Then, the joint system-pointer state

is evolved through a weak interaction generated by a Hamiltonian εH⊗Px, where

H is the Hamiltonian associated with the system, Px is the momentum operator

of the pointer system, and ε is a small positive number representing the weakness

of interaction. Following this, a strong post-selective measurement is performed

on the weakly evolved state of the system in a basis {|uk〉}k, where |uk〉 ∈ H,

which results in the pointer state φkf ∈ P+(HE) for each k, where

φkf ≈ 〈ui| ρ |ui〉 e−iε〈H〉
(k)
ρ Pxφin e

iε〈H〉(k)ρ Px (5.4)

where 〈H〉(k)ρ are the weak values, given by,

〈H〉(k)ρ =
tr
[
Hρ |uk〉 〈uk|

]
tr
[
ρ |uk〉 〈uk|

] . (5.5)

Note that Eq. (5.4) can be derived only under the approximation that ε is very

small. For measuring 〈H〉(k)ρ certain properties of the position and momentum

wave function of φkf needs to be observed. As mentioned in Ref [139], these

properties include shift in expectation value of the position and momentum wave

function compared to their initial values, variance of the momentum wave function,

rate of change of the position wave function, and strength of the weak interaction

i e., ε. A detailed analysis on this technique is provided in section II of [139].

Also recently, real and imaginary parts of a weak value was detected by using

Laguerre-Gaussian modes [140] in the pointer state. For a detailed discussion on

weak values, refer to [21].
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5.3 Entanglement witness via weak values using

two copies of the state

In this section, we present a technique using weak values to detect entanglement

of any two-qubit state, through a single projective measurement, i.e., measure-

ment in a single setting. It was recently shown [141], that by suitable choice of

Hamiltonian and post-selective measurement, weak values can be used to deter-

mine the concurrence of any pure two-qubit state. In this chapter, we generalize

this idea to any two-qubit state. For this purpose, we consider only two copies of

the two-qubit state in consideration.

Now, let us start by considering Alice and Bob share two copies of a two-

qubit state ρ ∈ P+(HA ⊗HB). The most general form of the density matrix of a

two-qubit state (mixed or pure) can be expressed in the following form,

ρ =


p u v w

u∗ q x y

v∗ x∗ r z

w∗ y∗ z∗ s

 (5.6)

where, p, q, r and s are real, non-negative numbers summing up to 1, and u, v,

w, x, y and z are complex numbers in general; u∗ is the complex conjugate of u,

etc. It should be noted that ρ is Hermitian. In addition to these conditions there

is another constraint of positivity of the above matrix, which has to be satisfied

by ρ to be a valid density matrix, but for our purpose here, we stick to the form

given in Eq. (5.6).
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5.3.1 The general case

We first consider the general case, where p, q, r and s are nonzero. As a result,

the determinant of the partially transposed matrix of ρ can be written as,

det(ρTB) = pqrs
(uu∗zz∗
pqrs

− uvy∗z∗

pqrs
− uw∗xz

pqrs
− u∗v∗yz

pqrs

−u
∗wx∗z∗

pqrs
+
vv∗yy∗

pqrs
− vw∗x∗y

pqrs
− v∗wxy∗

pqrs

+
ww∗xx∗

pqrs
+
uvw∗

pqr
+
u∗v∗w

pqr
+
uxy∗

pqs

+
u∗x∗y

pqs
− uu∗

pq
+
vx∗z∗

prs
+
v∗xz

prs

−vv
∗

pr
− xx∗

ps
+
wy∗z∗

qrs
+
w∗yz

qrs

−ww
∗

qr
− yy∗

qs
− zz∗

rs
+ 1
)
. (5.7)

It can be seen that the determinant in Eq. (5.7) is a polynomial of degree 4.

In [142], it was shown that an n-th degree homogeneous polynomial function of

the density matrix elements can be computed as the expectation value of a pair

observables, which acts on n copies of the density matrix. This result was later

on used by Augusiak et al. [116] to construct a single observable, acting on four

copies of a two-qubit state, to compute the determinant in Eq. (5.7) for witnessing

entanglement.

Our aim is to reduce the number of copies of the state required, and hence

reduce the resources required for the process of witnessing. For this purpose we

consider the technique of using weak measurement as in [141]. Note that, in Eq.

(5.3), for detecting entanglement of the unknown state ρ, it is sufficient to know

the sign of the determinant in Eq. (5.7). In other words it is enough to find

the value of (1/pqrs) detρTB . We also found that, finding values of the following

terms (and thereby, their complex conjugates) is sufficient to determine the value

of (1/pqrs) detρTB :

u∗

p
,
u

q
,
z∗

r
,
z

s
,
v∗

p
,
y∗

q
,
v

r
,
y

s
,
w∗

p
,
x∗

q
,
x

r
,
w

s
. (5.8)
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post-selectionpre-selection weak interaction
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Figure 5.1: Circuit realization of entanglement detection through weak interac-
tion. Here RX = eiεσx represents rotation of the bloch vector about x-axis through
an angle −2ε, and HD = |0〉 〈+| + |1〉 〈−| represents the Hadamard operation,
where |±〉 = 1√

2

(
|0〉 ± |1〉

)
.

Out of these 12 terms, it can be easily seen that 9 of them are independent. For

example u
q
, z
s

and w∗

p
can be expressed in terms of the remaining 9 terms. Note

that, this latter condition does not result in any reduction of copies,i.e. resources

required for the protocol.

We find that each of the terms in Eq. (5.8) can be seen as a weak value, as

in Eq. (5.5), if we consider two copies of the state i.e. ρ⊗ ρ ∈ P+((HA ⊗HB)⊗
(HA ⊗HB)) and choose the Hamiltonian H ∈ L((HA ⊗HB)⊗ (HA ⊗HB)) in an

appropriate form, along with the post-selective measurement in the computational

basis i.e., {|uk〉}16k=1 = {|0000〉 , |0001〉 , . . . , |1111〉}. It turns out that a suitable

form of H is the following,

H = |00〉 〈00| ⊗H1 + |01〉 〈01| ⊗H1

+ |10〉 〈10| ⊗H2 + |11〉 〈11| ⊗H3 (5.9)
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where,

H1 = I⊗ σx (5.10)

H2 = σx ⊗ I (5.11)

H3 = σx ⊗ σx (5.12)

with σx being the usual Pauli matrix along x-direction. Using the computational

basis {|uk〉}16k=1 and Eqs. (5.6) and (5.9), in Eq. (5.5), we find a list of weak values

and the terms of Eq. (5.8), they correspond to,

u∗

p
= 〈H〉(1)ρ⊗ρ ;

u

q
= 〈H〉(2)ρ⊗ρ ;

z∗

r
= 〈H〉(3)ρ⊗ρ ;

z

s
= 〈H〉(4)ρ⊗ρ ;

v∗

p
= 〈H〉(9)ρ⊗ρ ;

y∗

q
= 〈H〉(10)ρ⊗ρ ;

v

r
= 〈H〉(11)ρ⊗ρ ;

y

s
= 〈H〉(12)ρ⊗ρ ;

w∗

p
= 〈H〉(13)ρ⊗ρ ;

x∗

q
= 〈H〉(14)ρ⊗ρ ;

x

r
= 〈H〉(15)ρ⊗ρ ;

w

s
= 〈H〉(16)ρ⊗ρ (5.13)

Note that four weak values, generated out of the post selection measurement, are

redundant. As a result they do not occur in the above equation. Therefore, it can

be easily seen from Eq. (5.13), that our protocol leads to the determination of the

sign of the determinant in Eq. (5.7), and as a results it would lead to universal

entanglement detection for two-qubit quantum states. Note that in this protocol,

detection of entanglement is made only through a single projective measurement

setting, i.e., the post-selective measurement. Using the form of Hamiltonian given

in Eq. (5.9), we find the unitary operator U , giving rise to weak interaction is

given by,

U = |0〉 〈0| ⊗ I⊗ I⊗ e−iεσx + |10〉 〈10| ⊗ e−iεσx ⊗ I

+ |11〉 〈11| ⊗ e−iεσx⊗σx (5.14)

In the above form, we can write e−iεσx⊗σx = |+〉 〈+|⊗e−iεσx + |−〉 〈−|⊗eiεσx . Note

that, this represents a conditional unitary operation, conditioned on {|+〉 , |−〉}
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states. As a result we use Hadamard gate HD, which flips states {|+〉 , |−}〉 ↔
{|0〉 , |1〉}, to achieve the circuit realization of our protocol, as given in Fig. 5.1.

Also note that, the decomposition of H in Eq.(5.9) is not unique, as it can also

be chosen in any form where H1, H2 and H3 resides in any of the diagonal blocks

of the 16× 16 matrix H. Moreover, as mentioned earlier, there are 9 independent

terms in Eq. (5.8), which leads to 9 independent linear equations. Along with

these equations, the constraint p+q+r+s = 1, gives the exact solution for all the

unknown quantities in the density matrix ρ, and hence our protocol results in com-

plete identification of the two-qubit state i.e. state tomography. Henceforth, any

standard method for finding the amount of entanglement like negativity [101,143]

or concurrence [136] can be employed, and one can calculate how much entangled

the given state is. In particular, the following quantity, which can be easily ob-

tained from our protocol, can also used to estimate the amount of entanglement

present in the state :

E(ρ) = max{0,−det(ρTB)}. (5.15)

Thus we see our protocol not only serves as a technique to detect arbitrary two-

qubit entangled state, but also as a protocol to measure entanglement.

5.3.2 Special cases

Let us now consider the special cases where at least one of the diagonal elements

of ρ is zero. This scenario physically means receiving no signal on the pointer, for

the corresponding measurement outcome, before the weak interaction is switched

on. For example, if p is 0, no signal is received for outcome |0000〉, and similarly

for q, r or s we check if no signal is received for the outcomes |0101〉 , |1010〉 or

|1111〉, respectively. We will show here that even for this case the same protocol,

as described in Fig. 5.1, works. We now consider each case individually,

Case I

When p = 0, positivity of ρ demands u, v and w must also be 0. Similarly, when

s = 0 we must have w = y = z = 0. As a result, in both of these cases, we
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have det(ρTB) = −xx∗qr. In both of these cases, we first check if q or r is zero or

not. If either of them is zero, we conclude ρ is separable. If not, we check if the

weak value 〈H〉(14)ρ⊗ρ i e. x∗/q, is zero. If it is, then ρ is separable, otherwise it is

entangled.

Case II

Similarly, when q = 0 or r = 0 we have u = x = y = 0 or v = x = z = 0,

respectively. In both the cases we get det(ρTB) = −ww∗ps. Following this, in a

similar way as above, we check the values of p or s and subsequently, the weak

value 〈H〉(16)ρ⊗ρ i e. w/s, to determine if ρ is entangled or not.

5.3.3 Implementing the protocol through Local Operations

In this section, we show that if we restrict the two-qubit state to be pure states

only, we can realize the weak interaction through local operations on each of the

qubits. Consider ρ = |Ψ〉 〈Ψ |, where |Ψ〉 = a |00〉 + b |01〉 + c |10〉 + d |11〉. It can

be easily seen that ρ is separable if and only if ad−bc = 0. In the notations of Eq.

(5.6), we find p = |a|2, q = |b|2, r = |c|2, s = |d|2, u = ab∗ and z = cd∗. Therefore,

for this case we modify our protocol, and choose the weak Hamiltonian in Eq (5.5)

to be of the form,

H ′ = I⊗ I⊗ I⊗ σx (5.16)

It can be easily checked that the unitary operator corresponding to this Hamilto-

nian acts locally on all of the four qubits. Now, in the same way as in the previous

section, we first check if either of p, q, r or s is zero i.e by checking if signal is re-

ceived for outcomes |0000〉 , |0101〉 , |1010〉 or |1111〉. If one, or more of p, q, r and

s are zero, it would imply the corresponding terms among a, b, c and d are also

zero. Using these values we can easily check if ad− bc = 0. If none of p, q, r or s

are zero, we check if the weak values 〈H ′〉(2)ρ⊗ρ = 〈H ′〉(4)ρ⊗ρ, i e. if u/q = z/s. If the

equality holds then ρ is separable, otherwise it is entangled.

60



5.4 Robustness of the protocol

In real life experiments, errors are bound to occur. Here we show that, our protocol

is robust against errors arising from inappropriate choice of weak interaction.

Consider a situation, where an erroneous Hamiltonian of the form of He is chosen

in place of the correct Hamiltonian H, where ||H −He||1 ≤ δ. Note here, ||A||1 =

tr
√
A†A represents the trace norm of a matrix A. As a result, the error occurring

in the weak values are given by,

∆k = |〈H〉(k)ρ⊗ρ − 〈He〉(k)ρ⊗ρ| =
| 〈uk| ρ⊗ ρ(H −He) |uk〉 |

〈uk| ρ⊗ ρ |uk〉

≤ | 〈uk| ρ⊗ ρ(H −He) |uk〉 |
m

(5.17)

where m is the minimum of
{
{p, q, r, s} × {p, q, r, s}

}
1 and is always positive.

Note that, in obtaining the above inequality we used the fact 〈uk| ρ ⊗ ρ |uk〉 ∈{
{p, q, r, s} × {p, q, r, s}

}
and it can also be seen that in our protocol, the weak

value for kth outcome is only measured when 〈uk| ρ ⊗ ρ |uk〉 6= 0. As a result,

the denominator never vanishes in Eq. (5.17). Now, consider the eigenvalue

decomposition H −He =
∑

i λi |i〉 〈i|, where {|i〉}i forms an orthonormal basis in

HA ⊗HB ⊗HA ⊗HB, and also note that ||H −He||1 =
∑

i |λi|. As a result,

∆k ≤
|∑i λi 〈uk| ρ⊗ ρ |i〉 〈i|uk〉|

m

≤ 1

m

∑
i

|λi| | 〈uk| ρ⊗ ρ |i〉 〈i|uk〉|. (5.18)

Since 0 ≤ ρ ≤ I, it can be easily seen that | 〈uk| ρ ⊗ ρ |i〉 〈i|uk〉| ≤ 1. Thus we

have,

∆k ≤
1

m

∑
i

|λi| ≤
||H −He||1

m
≤ δ

m
(5.19)

Thus we see, our protocol is robust to errors arising from inappropriate choice of

weak interaction.

1Here for any set {a, b}, we define the cartesian product as {a, b}×{a, b} ≡ {a2, ab, ba, b2}.
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5.5 Summary

In this chapter, we have proposed a universal entanglement detection protocol for

two-qubit quantum states. We consider the most general form of density matrix

for two-qubit states, and show that it is enough to have just two copies of the

given state to identify if it is entangled or not. Our formulation is based on the

determinant based separability criterion and the idea of weak values. Previously

in [116], it was demonstrated that one can universally detect entanglement in

two-qubit systems using four copies of the state. Our protocol therefore, leads

to a clear advantage in terms of resource, as in our case it is sufficient to have

just two copies of the state. Our protocol requires only a single projective mea-

surement setting in the computational basis for the purpose of post selection in

weak measurement. It is interesting to note that in our protocol the number of

copies required for entanglement detection may be further reduced if some partial

information about the state is known. Moreover, we have also shown that the

procedure of identification is achievable by local operations, if the state in consid-

eration is a pure state. Further, we have shown that the protocol is robust against

error arising during application of the weak interaction.

Before concluding, it may be noted that though our scheme reduces the num-

ber of measurement settings compared to the universal entanglement witnessing

scheme of [116] that requires four copies of the state at a time, this advantage

comes at the expense of joint unitary actions on two copies of the state (for arbi-

trary mixed states). Further work involving quantitative comparison of resources

used in our scheme and that employed in other schemes such as in [116] would be

needed to obtain a clear idea of practical viability. In this context, one may need

to compare the energy cost of creating correlations [144] with the energy cost of

doing measurements [145,146] used in the various protocols. Finally, we note that

if a similar determinant based criterion for identification of certain class of states

is available for higher dimensions, we expect a similar detection protocol such as
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ours to work therein.

As of now, we have discussed the identification of quantum states for a given

scenario. In Chapter 4, we considered 1-sided device independent scenario, in light

of which a protocol has been presented to self-test any two-qubit pure entangled

state and the corresponding measurement settings. In the present chapter, we

show that it is possible to detect if any two-qubit state is entangled or not just by

using two copies of the state at a given time, without having any prior knowledge

about the state. Now in the next chapter, we discuss about another quantum re-

source which differs from the previously discussed non-local multipartite quantum

correlations on a basic level. This is named as quantum coherence and it does not

need to involve more than one parties. Coherence gives the idea of quantumness

for any particle and it encapsulates the defining feature of quantum information

theory based on the superposition principle. In the next chapter we try to ex-

plore the bridge between this physical resource and quantum entanglement. Here

we study the interplay of these quantities through some coherent and incoherent

operations and see the trade-off between them while entanglement gets generated

at the cost of coherence in the input end.
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Chapter 6

Coherence and entanglement

under three-qubit cloning

operations

Coherence and entanglement are the two most crucial resources for various quan-

tum information processing tasks. Here, we study the interplay of coherence and

entanglement under the action of different three-qubit quantum cloning opera-

tions. Considering certain well-known quantum cloning machines (input state

independent and dependent), we provide examples of coherent and incoherent op-

erations performed by them. We show that both the output entanglement and

coherence could vanish under incoherent cloning operations. Coherent cloning

operations, on the other hand, could be used to construct a universal and opti-

mal coherence machine. It is also shown that under coherent cloning operations,

the output two-qubit entanglement could be maximal even if the input coher-

ence is negligible. Also it is possible to generate a fixed amount of entanglement

independent of the nature of the input state.

6.1 Introduction and motivation

Out of three non-local quantum correlations (such as enanglement [6], steering [7,

10,11] and Bell-nonlocality [8]), entanglement is the most widely applied resource
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in the field of quantum information [45]. Various manifestations of entanglement

among discrete, continuous and hybrid physical variables have been studied in the

context of applications in information theoretic protocols such as dense coding [2],

teleportation [1] and cryptography [3]. Investigations of the resource theory of

entanglement have uncovered rich tenets [9], and some surprising features such

as intra-particle entanglement [147]. The connection of entanglement with other

defining features of quantum theory such as the uncertainty principle has been

rigorously examined [148,149].

Recently, quantum coherence [150] has come to be appreciated as one of the

fundamental features of quantum theory. It has been realized that coherence em-

bodies basic quantumness responsible for superposition of quantum states, from

which all quantum correlations arise in composite systems. As with entanglement,

several measures have been suggested to quantify coherence [151–153]. Interesting

connections of coherence with thermodynamic properties of multipartite systems

have been pointed out [154–156]. Efforts are on to develop resource theories of

coherence enabling it to be used for detection of genuine non-classicality in phys-

ical states, and advantage in physical tasks over those performed using classical

resources [157–159].

The relation of coherence with other resources in quantum theory forms an

interesting arena of study. In a recent work, Streltsov et al. [22] have provided an

important insight into the linkage of coherence with entanglement. Based upon

the observation that two-qubit incoherent operations can generate entanglement

only when the input state is coherent, they have shown that the input state

coherence provides an upper bound on the generated two-qubit entanglement. In

another recent work, the complementarity of local coherence measures has been

used to derive a nonlocal advantage of coherence in the form of enabling quantum

steering [160]. In entanglement theory, it is known that the robustness (robustness

of the state means here that the state does lose less quantum information in the

quantum teleportation through noisy channels.) of GHZ and W states depends

on the types of noisy channel [161] while W state is more robust against qubit

loss [162]. In the resource theory of coherence, Y-Luo et. al. [163] have shown
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that if one qubit is lost from GHZ state then the state will become incoherent

but in case of W state, if one qubit is lost then the remaining two-qubit state

remain coherent. Moreover, they have defined inequivalent classes of multipartite

coherence states in the same spirit as in entanglement theory. The connection

between coherence and nonlocal resources such as entanglement is important to

understand from both the perspective of quantum foundations and information

theoretic applications, and thus deserves further study in various contexts.

In the present work we pose the question as to how the linkage between coher-

ence and entanglement fares in the presence of additional parties or qubits. Specif-

ically, we study the relationship between two-qubit entanglement and coherence

under three-qubit operations. Quantum cloning provides a prototypical example

of three-qubit operations, and here we employ coherent and incoherent cloning

operations to investigate the connection between coherence and entanglement of

the input and output states. For this purpose we consider different categories of

cloning machines, such as the Wootters-Zurek [37] mechanism which acts as an

incoherent operation, the Buzek-Hillary state independent cloning machine [38]

which performs coherent operations. Also we consider phase covariant [39] and

state dependent universal [40] cloning machines in order to undertake our study.

Cloning could play an efficient role in resource replication, and in the present

context we propose an optimal quantum coherence machine using our analysis.

6.2 Entanglement and coherence in reduced two

qubit system under incoherent quantum op-

erations

In this section we consider a three qubit incoherent quantum operation and inves-

tigate the coherence and entanglement generated in two qubit reduced state when

third ancilla qubit is traced out. Coherence is an elementary property of quantum

theory, which is basically a measure of quantumness arising from the superposition

principle of quantum mechanics. As mentioned in Sec. (2.3), the quantification of
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coherence is basis dependent and also it might exist in a single-partite systems. In

the resource theory of coherence, a state ρ is said to be incoherent if the density

matrix of the state does not have non-zero off-diagonal element when written in

a given basis, as expressed in Eq. (2.10). Otherwise, it is said to be a coherent

state. This definition holds not only for single qubit systems but also for higher

dimensional quantum systems. There are different types of measures to quantify

the amount of coherence in a given quantum state as mentioned in Sec. (2.3).

In our present analysis, we will employ the l1 norm measure [150] defined as the

algebric sum of the off-diagonal elements of the density matrix corresponding to

the quantum state in consideration. The mathematical expression is given in Eq.

(2.12).

On the other hand, for the purpose of measuring entanglement, here we con-

sider concurrence [164] of the quantum state (as it is sufficient for two qubit

scenario) as defined in Eq. (2.2) of Chapter (2). In order to motivate our study,

let us here briefly return to the case of two qubit incoherent operations discussed

earlier by Streltsov et al. [22]. Consider the tensor product of an input coherent

state

|ψ〉a = c1 |0〉a + c2 |1〉a , |c1|2 + |c2|2 = 1 (6.1)

with the ancilla state |0〉b, and the state of the composite system is given by

|Φ〉ab = |ψ〉a ⊗ |0〉b
= c1 |00〉ab + c2 |10〉ab (6.2)

Now, a two qubit unitary CNOT operation which is given as,

UCNOT = |00〉 〈00|+ |01〉 〈01|+ |10〉 〈11|+ |11〉 〈10| (6.3)

applied on |Φ〉ab, results in the two qubit state given by

|φ〉out = c1 |00〉ab + c2 |11〉ab (6.4)

67



One may now consider the following cases. If either c1 = 0 or c2 = 0, the

input state (6.1) is incoherent and it remains an incoherent state even after

the application of CNOT operation. Since the CNOT operation takes an in-

coherent state to another incoherent state and takes the set of incoherent basis

{|00〉 , |01〉 , |10〉 , |11〉} into another {|00〉 , |01〉 , |11〉 , |10〉}, it can be regarded as

an incoherent operation. If both c1 6= 0 and c2 6= 0, the input state is a coherent

state and the application of the CNOT operation on the tensor product (6.2) will

generate an entangled state which basically reproduces the fact that to generate

entanglement through an incoherent operation one has to start with a coherent

state. In this case we find that the amount of entanglement generated is equal

to the amount of coherence present in the input state. In general, it has been

shown [22] that the maximum entanglement generated by an incoherent opera-

tion is given by the amount of coherence present in the input qubit. In other

words, a two-qubit incoherent operation generates entanglement, only if the input

state has non-vanishing coherence. It is hence natural to ask the question if such

a result can be extended to systems involving additional qubits. Note also, that

the coherence of the two qubit input state |Φ〉ab is equal to the coherence of the

two qubit output state (6.4) and it is given by 2|c1||c2|. Thus, the coherence of

the output state depends on the input state parameters. If, on the other hand,

we trace out the second system, i.e., the mode b from the two qubit system (6.4),

the qubit in mode a is left in an incoherent state. By generating entanglement

through this incoherent operation one has to pay the price in terms of reducing

the amount of coherence in the outputs ρA and ρB compared to that present in

the input state [22]. In fact, in this case the single-qubit state at the output end

is incoherent while we have started with a coherent state. In our subsequent anal-

ysis with three qubit operations, we investigate further this issue of the amount

of coherence retained in the output states and its relation to the entanglement

generated using three qubit operations.

Let us first consider the Wootters-Zurek cloning operation, which is a three
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qubit quantum operation expressed as [37]

|0〉 |0〉 |0〉 → |0〉 |0〉 |0〉 (6.5)

|1〉 |0〉 |0〉 → |1〉 |1〉 |1〉 (6.6)

where the first ket vector represents the input state, the second ket vector rep-

resents the blank state in which the input state is to be copied and the third

ket vector represents the machine state. It is clear from equations (6.5) and

(6.6) that the cloning operation transforms incoherent input state into incoherent

output state and also it takes the set of incoherent basis {|0〉 , |1〉} into another

{|0〉 , |1〉}, thus the above defined cloning operation is an example of a three qubit

incoherent operation. Note that, in [165] the WZ cloning machine has been stud-

ied for higher dimensional systems. From the transformation rule of this type of

higher dimensional cloning machines, it is clear that it keeps an incoherent input

state incoherent.

Now, if we take the input qubit to be coherent in nature, we see that this

incoherent operation (6.5-6.6) does not generate entanglement between the input

qubit and the blank qubit, when the ancillary machine state is traced out. Let us

take the input qubit to be of the form

|ψin〉 = α |0〉+ β |1〉 , |α|2 + |β|2 = 1 (6.7)

When the state (6.7) passes through the cloning transformation given in (6.5-6.6),

the resulting two qubit state at the output end after tracing out the machine qubit

is given by

ρout12 = |α|2 |00〉 〈00|+ |β|2 |11〉 〈11| (6.8)

Also, the density operators of the copy qubits are given by

ρout1 = ρout2 = |α|2 |0〉 〈0|+ |β|2 |1〉 〈1| (6.9)
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The following observations can be made from the equations (6.8-6.9). It can easily

be seen that the state described by the density operator ρout12 is not entangled.

Therefore, the transformation (6.5-6.6) is an example of a three qubit incoherent

operation that does not generate entanglement between the input qubit and the

blank qubit when machine qubit is traced out, even if we start with a coherent

input state. We further find that the state described by the density operator

ρout12 is an incoherent two qubit state. The copy qubits generated at the output

described by the density operators ρout1 = ρout2 are incoherent states too. Now, the

quality of copying of the cloning machine can be expressed in terms of the distance

between the initial and the reduced copied state at the output end, measured by

the Hilbert-Schmidt norm given as,

Da = Tr[(ρin − ρout1 )2] (6.10)

In case of Wootters-Zurek cloning machine, one obtains the distance as,

Da = 2|α|2(1− |α|2) (6.11)

where, Da is known as the copy quality index. Averaging over all input states,

one can obtain the copy quality as,

Da =
1

3
(6.12)

Note that, there is another cloning operation which does not generate entan-

gelement at the output end, named phase covariant cloning [39] which can be

regarded as an incoherent operation in single-qubit level (but generates coherence
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in two-qubit output) and it is given as,

|0〉 |Σ〉 |Q〉 → [(
1

2
+

√
1

8
) |00〉+ (

1

2
−
√

1

8
) |11〉] |↑〉

+
1√
8

(|01〉+ |10〉) |↓〉 (6.13)

|1〉 |Σ〉 |Q〉 → [(
1

2
+

√
1

8
) |11〉+ (

1

2
−
√

1

8
) |00〉] |↓〉

+
1√
8

(|01〉+ |10〉) |↑〉 (6.14)

Here, without any loss of generality we consider, |Σ〉 = |0〉, |Q〉 = |0〉, |↑〉 = |0〉
and |↓〉 = |1〉. Likewise in this scenario, it is never possible to generate any

entanglement starting even from a coherent state, as one can check starting from

a most general form of single qubit coherent state in computational basis, given

in Eq. (6.7) with α 6= 0 and β 6= 0. So this type of cloning machine is also not

effective for the purpose of generating entanglement. The above results motivate

us to consider next three qubit quantum operations which may not be incoherent

and can not only generate entanglement between the input qubit and the blank

qubit when ancillary machine qubit is traced out, but also generate coherence in

the copy qubits at the output.

6.3 Optimal Universal Two-qubit Quantum Co-

herence Machine

In this section we will consider the Buzek-Hillary (B-H) cloning operations [38]

to see that there exist two classes of three qubit coherent quantum operations

that generate coherence in the reduced two qubit system. In the first class, the

generated coherence depends on input state parameters, while in the second class,

the coherence in reduced two qubit system does not depend on the input state

parameters.

To begin with, let us consider a three qubit quantum operation [38] and recall
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the mathematical expression from Eqs. (2.13,2.14) of Sec. (2.4),

|0〉a |0〉b |0〉c →
√

2

3
|0〉a |0〉b |0〉c +√

1

6
(|0〉a |1〉b + |1〉a |0〉b) |1〉c (6.15)

|1〉a |0〉b |0〉c →
√

2

3
|1〉a |1〉b |1〉c +√

1

6
(|0〉a |1〉b + |1〉a |0〉b) |0〉c (6.16)

The above transformation is a two-qubit coherent quantum operation as it takes

an incoherent state to two-qubit coherent state. The above transformation is

also known as the optimal state independent BH cloning transformation in the

{|0〉, |1〉} basis. If we take the partial trace over the ancillary machine qubit c at

the output end of (6.15) and (6.16), the corresponding reduced two qubit density

operators are given by

ρout1ab =
2

3
|00〉 〈00|+ 1

6
(|01〉 〈01|+ |10〉 〈01|

+ |01〉 〈10|+ |10〉 〈10|) (6.17)

ρout2ab =
2

3
|11〉 〈11|+ 1

6
(|01〉 〈01|+ |10〉 〈01|

+ |01〉 〈10|+ |10〉 〈10|) (6.18)

The entanglement [25, 166] and coherence of the states ρout1ab and ρout2ab are equal

and given by 1
3
. Thus, the B-H cloning machine generates a two qubit coherent

state starting from an incoherent input qubit.

Let us next consider the input state |ψin〉 (6.7) with non-zero state parameters

α and β. If we apply the optimal universal B-H cloning transformations given in

(6.15) and (6.16) on |ψin〉, the two qubit cloned state at the output end comes
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out to be of the form,

ρoutab =
2

3
|α|2 |00〉 〈00|+

√
2αβ∗

3
|00〉 〈+|+

√
2α∗β

3
|+〉 〈00|+ 1

3
|+〉 〈+|

+

√
2αβ∗

3
|+〉 〈11|+

√
2α∗β

3
|11〉 〈+|+ 2

3
|β|2 |11〉 〈11|) (6.19)

where |+〉 = 1√
2
(|01〉 + |10〉). The amount of coherence contained in the state

described by the density operator ρoutab is given by 4(α∗β+αβ∗)+1
3

. (∗ denotes the

corresponding complex conjugate) Thus, in case of the B-H quantum cloning

machine, the generated cloned two qubit output is always coherent. It can be

observed that the coherence of the state ρoutab depends on the state parameters α

and β of the input. But, it should be noted that the concurrence of this two party

output state turns out to be 1
3
, which is independent of the input state parameters.

Also, it is quite interesting to note that this cloning machine generates a constant

amount of entanglement starting from any single qubit input state. Hence it can

be used as a source of constant entanglement.

We have seen that if we use this coherent quantum operation (6.15-6.16), the

coherence of the reduced two qubit output state depends on the input state. It

would be interesting to design a universal coherence transformation that trans-

forms an arbitrary state |Ψ〉ab which may or may not be coherent, to a two qubit

coherent state. We demand the transformation to be universal in the sense that

the coherence of the two qubit output state should not be depending on the input

state parameters. To construct such a coherence transformation, let us start with

the most general form B-H quantum cloning transformation given by

|0〉a |0〉b |Q〉c → |0〉a |0〉b |Q0〉c + (|0〉a |1〉b +

|1〉a |0〉b) |Y0〉c (6.20)

|1〉a |0〉b |Q〉c → |1〉a |1〉b |Q1〉c + (|0〉a |1〉b +

|1〉a |0〉b) |Y1〉c (6.21)
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Unitarity of the transformation gives the relations

c〈Qi|Qi〉c + 2c〈Yi|Yi〉c = 1, i = 0, 1 (6.22)

c〈Y0|Y1〉c = 0, (6.23)

Let us further assume the following orthogonality relations between the machine

state vectors:

c〈Qi|Yi〉c = 0, i = 0, 1 (6.24)

c〈Q0|Q1〉c = 0, (6.25)

First let us apply the cloning transformation given in (6.20) and (6.21) on an

incoherent input state, say, |0〉 (|1〉). At the output end, the coherence and con-

currence of the final two party state (while the state of the ancillary system is

traced out) turn out to be the same and it is given by, 2µ, where, µ is given by,

c〈Y0|Y0〉c =c 〈Y1|Y1〉c = µ (6.26)

Secondly, applying the cloning transformation (6.20) and (6.21) on |ψin〉 given

by Eq.(6.7), and taking the partial trace over the ancillary machine qubit c, we

obtain the cloned two qubit state described by the density operator

%outab = |α|2(1− 2µ)|00〉〈00|+ αβ∗
ν√
2
|00〉〈+|+ α∗β

ν√
2
|+〉〈00|

+2µ|+〉〈+|+ αβ∗
ν√
2
|+〉〈11|+ α∗β

ν√
2
|11〉〈+|

+|β|2(1− 2µ)|11〉〈11|) (6.27)

where µ is given as Eq.(6.26) and ν is given by

c〈Y0|Q1〉c =c 〈Q0|Y1〉c =
ν

2
(6.28)
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Using the Schwarz inequality, the range of the parameters µ, ν are given by

0 ≤ µ ≤ 1

2
and 0 ≤ ν ≤ 2

√
µ
√

1− 2µ ≤ 1√
2

(6.29)

Now, the coherence of the state described by the density operator %outab is given by

Cl1(%
out
ab ) = 2µ+ 2(α∗β + αβ∗)ν (6.30)

The quantity Cl1(%
out
ab ) is input state independent if ν = 0. In this case Eq.(6.30)

reduces to Cl1(%
out
ab ) = 2µ. The maximum value of Cl1(%

out
ab ) can be obtained by

putting µ = 1
2
, which leads to

Cl1(%
out
ab ) = 1 (6.31)

For these particular values of µ and ν, it can be seen that the concurrence of the

two party state is maximum. Also note that, the copy quality index in this case

turns out to be 1
18

which is much less than that of WZ cloning machine (hence

better quality of cloning) and also independent of the input state parameter [38].

Eq. (6.31) is the evidence of the fact that the coherence present in the two qubit

output state is optimal and independent of the input state parameters. Thus,

we are successful in constructing a universal quantum coherence machine start-

ing from the B-H quantum cloning machine. Particularly, the optimal universal

quantum coherence transformation is given by

|0〉a|0〉b|0〉c →
√

1

2
(|0〉a|1〉b + |1〉a|0〉b)|0〉c (6.32)

|1〉a|0〉b|0〉c →
√

1

2
(|0〉a|1〉b + |1〉a|0〉b)|1〉c (6.33)

It is now clear that optimal universal quantum coherence transformation can

be obtained from B-H quantum cloning transformation by choosing the machine

vector in such a way that µ = 1
2

and ν = 0. Let us now ascertain how well the
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B-H copying machine with machine parameters µ = 1
2

and ν = 0 copies the input

qubit described by the density operator

ρin = |ψin〉 〈ψin|

= |α|2 |0〉 〈0|+ αβ∗ |0〉 〈1|+ α∗β |1〉 〈0|+ |β|2 |1〉 〈1| (6.34)

Since the B-H quantum cloning machine is considered to be symmetric in nature,

the copies of the input state at the output end of the copying machine are identical

and are given by

ρouta = ρoutb = (|α|2(1− 2µ) + 2µ)|0〉〈0|+
√

2ναβ∗|0〉〈1|

+
√

2να∗β|1〉〈0|+ (|β|2(1− 2µ) + 2µ)|1〉〈1| (6.35)

The distance between ρin and ρouta /ρoutb can be measured by the Hilbert Schmidt

norm, given as

Da = Tr[(ρin − ρouta )2] = Tr[(ρin − ρoutb )2]

= 2µ2(1− 4|α|2|β|2) + 2|α|2|β|2(ν − 1)2 (6.36)

Note that, for ν = 1−2µ, the quality of copy for the B-H cloning machine becomes

input state independent and particularly for µ = 1
2

and ν = 0, the distance Da

reduces to

Da =
1

2
(6.37)

Equation (6.37) indicates that the quality of the copy also does not depend on the

input state parameter. Therefore, for the cloning machine parameter µ = 1
2

and

ν = 0, the B-H quantum cloning machine becomes an input state independent

quantum cloning machine, but it should be noted that this cloning machine is not

optimal in terms of quality of cloning.
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6.4 Generation of entanglement from coherent

operations

A quantum operation is said to be a coherent operation if it generates coherence

even from an incoherent state. It has been already seen that under the application

of any coherent operation it is possible to generate entanglement starting even

from an incoherent state. Unlike incoherent quantum operations (free operation

in coherence resource theory), we have seen that when a coherent operation (6.15)

acts on the tensor product of an incoherent input state and an incoherent ancilla

state, it generates entanglement in the two qubit reduced state when the ancilla

state is traced out. We found that the amount of entanglement generated in the

two qubit reduced state is equal to the amount of coherence in it. This leads us

to the following result.

Result: If we construct a coherent operation Λc in such a way that it generates

a two qubit mixed state of the form

ρAB = a|00〉〈00|+ b|01〉〈01|+ c|01〉〈10|+ c∗|10〉〈01|

+d|10〉〈10|+ e|11〉〈11| (6.38)

when applied on the tensor product of an incoherent input state and an incoherent

ancilla state, the output entanglement and coherence are related by

C(ρAB) ≤ Cl1(ρAB) (6.39)

where C(ρAB) is the concurrence of the output two qubit state and Cl1 is the l1

norm measure of coherence of the corresponding state.

Proof: It is known that the concurrence of the two qubit mixed entangled state

(6.38) is given by [167,168],

C(ρAB) = max{0, 2(|c| − √ae)} (6.40)
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From (6.40), we find that

C(ρAB) ≤ 2|c| (6.41)

Again, the l1 norm of coherence of the two qubit mixed state (6.38) is given by

Cl1(ρAB) = |c|+ |c| = 2|c| (6.42)

Using (6.41) and (6.42), we have

C(ρAB) ≤ Cl1(ρAB) (6.43)

Hence proved.

In this section, we consider a coherent operation in the form of B-H quantum

cloning machine to study the entanglement structure of the two qubit output

state. Depending on the (coherent/incoherent) nature of the input state, we

analyze the entanglement structure of two qubit state at the output end of the

cloning machine. First, let us consider the case when the input state to be cloned

is an incoherent state which is either of the form |0〉 or |1〉. When |0〉 goes through

the cloning transformation given by Eqs.(6.20) and (6.21), the two qubit output

state is given by

ρout3ab = (1− 2µ)|00〉〈00|+ 2µ|+〉〈+| (6.44)

It is clear that the concurrence of the two qubit state ρout3ab given by Eq.(6.44)

is non-zero and given by 2µ. A similar result can be obtained when the input

state to be cloned is of the form |1〉. Therefore, the general B-H quantum cloning

transformation generates an entangled two qubit cloned state when the input state

is an incoherent. A maximally entangled state is generated when µ = 1
2
. The

structure of the cloning transformation that generates the maximally entangled

state of two cloned copies out of the incoherent input state is the same as the

state independent quantum coherence transformation given by (6.32-6.33).

In the second scenario, let us consider that the input state to be cloned is
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a coherent state |ψin〉 given by (6.7). When the general B-H quantum cloning

transformation is applied on |ψin〉 and tracing out the cloning machine state vector,

the resulting two qubit state of two cloned copies is entangled. We study the

entanglement of the output two qubit state for two cases.

Case-I: If we perform a state independent B-H quantum cloning transformation

given by (6.20) and (6.21) with ν = 1− 2µ, on any arbitrary coherent input state

|ψin〉, the output state is given by

%outab = |α|2(1− 2µ)|00〉〈00|+ αβ∗
1− 2µ√

2
|00〉〈+|+ α∗β

1− 2µ√
2
|+〉〈00|

+2µ|+〉〈+|+ αβ∗
1− 2µ√

2
|+〉〈11|+ α∗β

1− 2µ√
2
|11〉〈+|

+|β|2(1− 2µ)|11〉〈11|) (6.45)

We find that the generated two qubit cloned state is entangled and it is clearly

evident from the plot given below. From the plot, it can be seen that there exist

Figure 6.1: Concurrence of the two qubit output state is plotted against the machine parameter
µ and the input state parameter α.

state independent B-H quantum cloning transformations that cannot be used to

generate two qubit entangled states. Additionally, one may note that the optimal

state independent B-H quantum cloning machine can be used to generate a two
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qubit cloned state from a coherent input state. Also, one may observe that there

exists a cloning transformation which generates maximum entanglement at the

output end even when the coherence of the input is negligible.

Case-II: If we apply the optimal state independent quantum coherence transfor-

mation given by (6.32-6.33) on the coherent input state |ψin〉 (or may be on any

incoherent input state, i.e. |ψin〉 either with β = 0 or α = 0), then the two party

output state is given by,

%outab =
1

2
(|01〉〈01|+ |01〉〈10|+ |10〉〈01|+ |10〉〈10|) (6.46)

The concurrence of this state is unity for any type of input state. So even for

negligible amount of coherence it generates maximal entanglement.

6.5 Study of coherence and entanglement in case

of general state dependent cloning machine

Now let us consider the cloner that operates as a unitary operation [40] on the

composite Hilbert space of the three party state and it is given as,

|0〉 |0〉 |X〉 → a |00〉 |A〉+ b1 |01〉 |B1〉+ b2 |10〉 |B2〉+

c |11〉 |C〉 (6.47)

|1〉 |0〉 |X〉 → ã |11〉
∣∣∣Ã〉+ b̃1 |01〉

∣∣∣B̃1

〉
+ b̃2 |10〉

∣∣∣B̃2

〉
+

c̃ |00〉
∣∣∣C̃〉 (6.48)

The above cloning operations are introduced in Eqs. (2.15, 2.16) of Sec. (2.4) and

are corresponding to the incoherent input states |0〉 and |1〉 respectively. Here the

state |X〉 represents the initial ancillary machine state and |A〉, |B1〉, |B2〉, |C〉,∣∣∣Ã〉,
∣∣∣B̃1

〉
,
∣∣∣B̃2

〉
,
∣∣∣C̃〉 signify the ancillary machine state at the output end. As

the operation of cloning is unitary, the coefficients in each case should satisfy the
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normalization conditions,

a2 + b1
2 + b2

2 + c2 = 1 (6.49)

ã2 + b̃1
2

+ b̃2
2

+ c̃2 = 1 (6.50)

Here, we chose that c = 0 and c̃ = 0 as the terms corresponding to these coefficients

do not produce any productive output (neither it copies the state properly nor

gives back the original state). Now for our convenience let us choose (without any

loss of generality), |A〉 = |0〉 , |B1〉 = |1〉 , |B2〉 = |1〉 and hence
∣∣∣Ã〉 = |1〉 ,

∣∣∣B̃1

〉
=

|0〉 ,
∣∣∣B̃2

〉
= |0〉. Let us first start with an incoherent state |0〉 (|1〉), and under

the transformation 6.47 (6.48) it can be observed that the single party cloned

state at the output end is incoherent in nature. So, we can can call it as a single-

qubit incoherent cloning operation. It is interesting to notice that under such

type of cloning operation on these incoherent states, it is possible to generate an

entangled state at the output end, whose concurrence is given by, 2b1 (or, 2b̃1)

with b1 = b2 (and, b̃1 = b̃2)(assuming the cloning machine to be symmetric). Now

let us consider the initial state to be coherent as given in, 6.7. Now after passing

through the cloning machine, the output three party state becomes, |ψout〉 =

α[a |000〉 + b1 |011〉 + b2 |101〉] + β[ã |111〉 + b̃1 |100〉 + b̃2 |010〉]. Now to find the

coherence of the copied state or the original state after the operation, one needs to

trace out the two party state with respect to either the first party or with respect to

the second party. For this cloning machine to be symmetric in nature, one should

have the coherence of both the states to be equal. By assuming the symmetry of

the operation one can get the coherence as 2(ãb2+ab̃2)αβ = 2(ãb2+ab̃2)α
√

1− α2.

Now optimization with respect to a, ã, b1, b̃1 gives that the maximum value of

coherence of the final one party state for this type of cloning is
√

2αβ. The

corresponding values of the parameters are a = 3
4
√
2

= 0.695654, b1 = b2 =
√
23
8

=

0.507969, ã =

√
23
2

4
= 0.718377 and b̃1 = b̃2 = 3

8
= 0.491902. One can easily

see that compared to the state independent cloning the coherence of the final

state is better in this case. Also, the entanglement also shows an improvement

with respect to optimal BH cloning machine. The variation of concurrence with
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respect to the state parameter, for the optimized set of parameters of the machine

is shown in Fig. (6.2) and it can be seen for most of the values of state parameter

α the output two party state remains entangled.

Figure 6.2: Concurrence of the two qubit output state for general state dependent cloning
machine is plotted against the input stateparameter α.

6.6 Summary

In this work we have considered three qubit cloning operations and studied the two

qubit output coherence and entanglement. The cloning operations have different

copy quality indices and here we have considered cloning machines with different

copying efficiency. In some cases it is independent of the input state parameters

and for others, efficiency is dependent on the same. Recently, a bound has been

obtained on the two qubit entanglement in terms of the coherence of a single qubit

input state when an incoherent operation is performed on it [22]. Our motivation

for the present study is to investigate further the connection between entanglement

and coherence in the context of cloning operations involving additional qubits. For

this purpose we have considered here two types of well known cloning operations,

viz., the Wootters-Zurek copier [37], and the Buzek-Hillery copier [38]. As we have
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discussed, our cloning operations could be categorized into three qubit coherent

and incoherent operations. We have shown that the WZ cloning machine does not

generate either coherence or entanglement at the output. Cloning operations may

be regarded as resource replicators in quantum information processing. In the

present work we next show that the BH copier could act as a universal coherence

machine that generates a fixed amount of coherence in the two qubit output state

irrespective of the input state parameters. Under the action of coherent cloning

operations, a relation is obtained among the two qubit output coherence and

entanglement. We have further shown that under such operations, the output

entanglement could be maximal even if the input state coherence is negligible.
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Chapter 7

Summary and conclusions

The theory of quantum correlations plays a crucial role in quantum information

processing tasks, quantum computation and quantum controls. Hence the sub-

ject of quantum correlations is a well-studied and vastly explored subject in the

literature of quantum information. The motivation of this thesis was to provide

some useful tools and results which could make some of these correlations more

realizable physically.

In the thesis, we mainly deal with quantum entanglement and quantum steer-

ing. Both of these correlations show quite a fragile nature when exposed to the

noise of environment. To perform any process in laboratory involves different sort

of environmental interactions. As described in Chapter (3), there exists different

theoretical noise models which govern the effect of the decoherence caused due to

the noise, physically. In this thesis we consider one of them, the generalized am-

plitude damping channel (GADC) and prescribe a general preservation technique

which is based on the structure and the evolution of a given channel. First, from

the operator sum representation of the corresponding channel we find the unitary

dilation considering suitable ancillary state. This unitary is not unique in nature.

After obtaining the unitary, the inverse of the same is calculated. This inverse

unitary dilation gives another CPTP map, corresponding to which there exists a

Kraus representation giving the inverse effect of the initial channel. We employ

these individual Kraus operators as elements of a POVM. This selective imple-

mentation of the POVM shows a fruitful improvement of quantum correlations
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for a broad range of channel parameters even after passing through the GADC.

Now as the unitary dilation is not unique, it leaves us with the scope of creating

suitable POVM for the particular situation under consideration. In this thesis, we

choose a particular channel under which the system is evolving, but the method

that has been proposed here, has the potential to deal with different kinds of noise

models as the procedure just involves the basic structure of the given noisy chan-

nel. As a future direction it would be interesting to employ this model to preserve

important resource for other known noise models, and to compare the effect with

other noise-reduction or error-correcting procedures. Also, the unitary dilations

chosen corresponding to the particular channel are completely arbitrary choices.

It would be interesting and essential to find the most suitable unitary dilation

required for a particular scenario by optimizing over few other parameters. This

optimization can be done numerically by constraining ourselves to the cases when

the chosen unitary action does not generate much correlation between the initial

system state and the ancillary qubits, hence destroying the minimal correlation

within the system itself.

In the next part of the thesis, the discussion is focused on the recognization

of a particular quantum state in a given scenario of quantum correlation. In

Chapter (4) it has been shown that it is possible to self-test any pure two-qubit

entangled state in 1-sided device independent scenario with the help of steering

inequalities. The maximal violation of FGI of steering exactly identifies the class

of the state as the class of pure states, as the maximal violation is obtained if

and only if the state under consideration is a pure state. From the value of

the violation of this inequality, the corresponding measurement settings is also

obtained. Afterwards, with the help of another steering inequality (ACHSH or

CFFW of steering) or by calculating a quantity mutual predictability it is shown

to be possible to identify the particular state (up to some local unitary evolution)

in hand. Also, it has been shown that there exists an one-sided isometry structure

which gives a correspondence from the system in dimension d⊗ 2 to that in 2⊗ 2.

Now, the robustness of the procedure should be studied in terms of the improper

choice of measurement settings and non-exact value of the violation of the steering
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inequalities, as the future directions. Also, it would be interesting to extend the

work for multipartite scenario, and to identify different classes of pure entangled

state in that case.

Out of all types of quantum correlations, entanglement is the most explored

and useful resource in the field of information processing. Separability problems

dealing with the identification of any arbitrary quantum state, are the fundamen-

tal problem in this direction and it holds a position of great significance for ages.

In the Chapter (5) we discuss an entanglement detection problem motivated to-

wards the minimalization of the resource requirement with respect to previous

protocols. Here, it has been shown that it is possible to identify if a given un-

known state is entangled or not, with the help of two copies of the state supplied

at a given time. To restrict ourselves to just two copies of the state, we use the

technique of weak measurement, and by obtaining the weak values corresponding

to a global Hamiltonian we show that it is possible to exactly find the elements of

the density matrics in consideration, while the post-selective measurement is done

in the computational basis. At the end of the procedure of detecting the entan-

glement using two copies of the state, eventually it identifies all the parameters of

the density matrix, which is nothing but the complete identification of the state.

So, as a future direction, it is important to compare the resource requirement

of this procedure with that of a complete state tomography. Also, it would be

interesting to find the thermodynamic energy cost for the implementation of the

global Hamiltonian that has been used in the procedure.

As mentioned before, coherence and entanglement are the two most crucial

resources for various quantum information processing tasks. Here, in Chapter (6)

we study the interplay of coherence and entanglement under the action of different

three-qubit quantum cloning operations. Considering certain well-known quantum

cloning machines (input state independent and dependent), we provide examples

of coherent and incoherent operations performed by them. We show that both

the output entanglement and coherence could vanish under incoherent cloning

operations. Coherent cloning operations, on the other hand, could be used to

construct a universal and optimal coherence machine. It is also shown that under
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coherent cloning operations, the output two-qubit entanglement could be maximal

even if the input coherence is negligible.

Overall, this thesis explores the ideas regarding different non-local quantum

correlations. It concerns itself to make these correlations to be more resourceful

for different physical tasks, in presence of noisy environment. On the other hand,

it explores the detection mechanisms of them as well as interconversion of various

resources of quantum information theory.
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[133] Florian Mintert, Marek Kuś, and Andreas Buchleitner. Concurrence of

mixed multipartite quantum states. Phys. Rev. Lett., 95:260502, Dec 2005.

[134] Florian Mintert and Andreas Buchleitner. Observable entanglement measure

for mixed quantum states. Phys. Rev. Lett., 98:140505, Apr 2007.

[135] Christian Schmid, Nikolai Kiesel, Witlef Wieczorek, Harald Weinfurter, Flo-

rian Mintert, and Andreas Buchleitner. Experimental direct observation of

mixed state entanglement. Phys. Rev. Lett., 101:260505, Dec 2008.

[136] Valerie Coffman, Joydip Kundu, and William K. Wootters. Distributed

entanglement. Phys. Rev. A, 61:052306, Apr 2000.

[137] Anna Sanpera, Rolf Tarrach, and Guifré Vidal. Local description of quan-
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[143] Karol Życzkowski, Pawe l Horodecki, Anna Sanpera, and Maciej Lewenstein.

Volume of the set of separable states. Phys. Rev. A, 58:883–892, Aug 1998.

[144] David Edward Bruschi, Mart́ı Perarnau-Llobet, Nicolai Friis, Karen V. Hov-

hannisyan, and Marcus Huber. Thermodynamics of creating correlations:

Limitations and optimal protocols. Phys. Rev. E, 91:032118, Mar 2015.

[145] Kais Abdelkhalek, Yoshifumi Nakata, and David Reeb. Fundamental energy

cost for quantum measurement. arXiv preprint arXiv:1609.06981, 2016.

[146] Miguel Navascués and Sandu Popescu. How energy conservation limits our

measurements. Phys. Rev. Lett., 112:140502, Apr 2014.

[147] Danilo Boschi, Salvatore Branca, Francesco De Martini, Lucien Hardy, and

Sandu Popescu. Experimental realization of teleporting an unknown pure

quantum state via dual classical and einstein-podolsky-rosen channels. Phys-

ical Review Letters, 80(6):1121, 1998.

[148] Mario Berta, Matthias Christandl, Roger Colbeck, Joseph M Renes, and Re-

nato Renner. The uncertainty principle in the presence of quantum memory.

Nature Physics, 6(9):659, 2010.

[149] T Pramanik, P Chowdhury, and AS Majumdar. Fine-grained lower limit of

entropic uncertainty in the presence of quantum memory. Physical review

letters, 110(2):020402, 2013.

102



[150] Tillmann Baumgratz, Marcus Cramer, and Martin B Plenio. Quantifying

coherence. Physical review letters, 113(14):140401, 2014.

[151] Davide Girolami. Observable measure of quantum coherence in finite di-

mensional systems. Physical review letters, 113(17):170401, 2014.

[152] Carmine Napoli, Thomas R Bromley, Marco Cianciaruso, Marco Piani,

Nathaniel Johnston, and Gerardo Adesso. Robustness of coherence: an

operational and observable measure of quantum coherence. Physical review

letters, 116(15):150502, 2016.

[153] Yao Yao, GH Dong, Xing Xiao, and CP Sun. Frobenius-norm-based mea-

sures of quantum coherence and asymmetry. Scientific reports, 6:32010,

2016.
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